
defcon Documentation
Release 0.7.0

Tal Leming

Aug 20, 2023

Contents

1 Basic Usage 3

2 Concepts 5

3 Objects 9

4 Dependencies 97

5 Optional Dependencies 99

6 Indices and tables 101

Python Module Index 103

Index 105

i

ii

defcon Documentation, Release 0.7.0

defcon is a set of UFO based objects optimized for use in font editing applications. The objects are built to be
lightweight, fast and flexible. The objects are very bare-bones and they are not meant to be end-all, be-all objects.
Rather, they are meant to provide base functionality so that you can focus on your application’s behavior, not object
observing or maintaining cached data.

Contents 1

defcon Documentation, Release 0.7.0

2 Contents

CHAPTER 1

Basic Usage

defcon is very easy to use:

from defcon import Font
font = Font()
now do some stuff!

3

defcon Documentation, Release 0.7.0

4 Chapter 1. Basic Usage

CHAPTER 2

Concepts

2.1 Notifications

defcon uses something similar to the Observer Pattern for inter-object communication and object observation. This
abstraction allows you to cleanly listen for particular events happening in particular objects. You don’t need to wire up
lots of hooks into the various objects or establish complex circular relationships thoughout your interface code. Rather,
you register to be notified when something happens in an object. In defcon, these are referred to as notifications. For
example, I want to be notified when the my font changes:

class MyInterface(object):

random code here, blah, blah.

def setGlyph(self, glyph):
glyph.addObserver(self, "glyphChangedCallback", "Glyph.Changed")

def glyphChangedCallback(self, notification):
glyph = notification.object
print("the glyph (%s) changed!" % glyph.name)

When the glyph is changed in anyway by anyone, it posts a “Glyph.Changed” notification to all registered observers.
My method above is called when this happens and I can react as needed.

The NotificationCenter object implements all of this. However, all objects derived from dercon.BaseObject
have a simplified API for tapping into notifications. Each object posts its own unique notifications, so look at the
relevant reference for information about the available notifications.

2.1.1 Don’t Forget removeObserver

The only real gotcha in this is that you must remove the observer from the observed object when the observation is no
longer needed. If you don’t do this and the observed object is changed, it will try to post a notification to the object
you have discarded. That could lead to trouble.

5

http://en.wikipedia.org/wiki/Observer_pattern

defcon Documentation, Release 0.7.0

2.2 Subclassing

The defcon objects are built to have basic functionality. Your application can, and should, have its own functionality
that is not part of the standard defcon repertoire. The objects are built with this in mind – they are built to be subclassed
and extended. This is done easily:

from defcon import Glyph

class MyCustomGlyph(Glyph):

def myCustomMethod(self):
do something to the glyph data

When it is time to load a font, you pass this custom class to the Font object:

from defcon import Font

font = Font(glyphClass=MyCustomGlyph)

When a glyph is loaded, the glyph class you provided will be used to create the glyph object.

2.3 External Changes

It may be advantageous for your application to notice changes to a UFO that were made outside of your application.
the Font object can help you with this. This object has a testForExternalChanges() method. This method
will compare the data that has been loaded into the font, glyphs, etc. with the data in the UFO on disk. It will report
anything that is different from when the UFO was last loaded/saved.

To do this in a relatively effiecient way, it stores the modification data and raw text of the UFO file inside the object.
When the testForExternalChanges() method is called, the modification date of the UFO file and the stored
modification date are compared. A mismatch between these two will trigger a comparison between the raw text in the
UFO file and the stored raw text. This helps cut down on a significant number of false positives.

The testForExternalChanges() method will return a dictionary describing what could have changed. You
can then reload the data as appropriate. The Font object has a number of reload methods specifically for doing this.

2.3.1 Scanning Scheduling

defcon does not automatically search for changes, it is up to the application to determine when the scanning should
be performed. The scanning can be an expensive operation, so it is best done at key moments when the user could
have done something outside of your application. A good way to do this is to catch the event in which your applica-
tion/document has been selected after being inactive.

2.3.2 Caveats

There are a couple of caveats that you should keep in mind:

1. If the object has been modified and an external change has happened, the object is considered to be the most
current data. External changes will be ignored. This may change in the future. I’m still thinking this through.

2. The font and glyph data is loaded only as needed by defcon. This means that the user could have opened a font
in your application, looked at some things but not the “X” glyph, switched out of your application, edited the
GLIF file for the “X” glyph and switched back into your application. At this point defcon will not notice that

6 Chapter 2. Concepts

defcon Documentation, Release 0.7.0

the “X” has changed because it has not yet been loaded. This probably doesn’t matter as when the “X” is finally
loaded the new data will be used. If your application needs to know the exact state of all objects when the font
is first created, preload all font and glyph data.

2.4 Representations

One of the painful parts of developing an app that modifies glyphs is managing the visual representation of the glyphs.
When the glyph changes, all representations of it in cached data, the user interface, etc. need to change. There are
several ways to handle this, but they are all cumbersome. defcon gives you a very simple way of dealing with this:
representations and representation factories.

Note: Representations have been extended to allow other font object classes, so that fonts, layers, glyphs, contours,
etc. can have representations too.

2.4.1 Representations and Representation Factories

A representation is an object that represents a glyph. As mentioned above, it can be a visual representation of a glyph,
such as a NSBezierPath. Representations aren’t just limited to visuals, they can be any type of data that describes a
glyph or something about a glyph, for example a string of GLIF text, a tree of point location tuples or anything else you
can imagine. A representation factory is a function that creates a representation. You don’t manage the representations
yourself. Rather, you register the factory and then ask the glyphs for the representations you need. When the glyphs
change, the related representations are destroyed and recreated as needed.

2.4.2 Example

As an example, here is a representation factory that creates a NSBezierPath representation:

def NSBezierPathFactory(glyph):
from fontTools.pens.cocoaPen import CocoaPen
pen = CocoaPen(glyph.getParent())
glyph.draw(pen)
return pen.path

To register this factory, you do this:

from defcon import Glyph, registerRepresentationFactory
registerRepresentationFactory(Glyph, "NSBezierPath", NSBezierPathFactory)

Now, when you need a representation, you simply do this:

path = glyph.getRepresentation("NSBezierPath")

Not only do you only have to register this once to be able get the representation for all glyphs, the representation is
always up to date. So, if you change the outline in the glyph, all you have to do to get the updated representation is:

path = glyph.getRepresentation("NSBezierPath")

2.4. Representations 7

defcon Documentation, Release 0.7.0

2.4.3 Implementation Details

Representation Factories

Representation factories should be functions that accept a font object class (such as Glyph, Font, Contour
etc.) as first argument. After that, you are free to define any keyword arguments you need. You must regis-
ter the factory with the registerRepresentationFactory function. When doing this, you must define a
unique name for your representation. The recommendation is that you follow the format of “applicationOrPackage-
Name.representationName” to prevent conflicts. Some examples:

registerRepresentationFactory(Glyph, "MetricsMachine.groupEditorGlyphCellImage",
→˓groupEditorGlyphCellImageFactory)
registerRepresentationFactory(Glyph, "Prepolator.previewGlyph", previewGlyphFactory)

Representations

Once the factory has been registered, glyphs will be able to serve the images. You can get the representation like this:

image = glyph.getRepresentation("MetricsMachine.groupEditorGlyphCellImage")

You can also pass keyword arguments when you request the representation. For example:

image = glyph.getRepresentation("MetricsMachine.groupEditorGlyphCellImage",
→˓cellSize=(40, 40))

These keyword arguments will be passed along to the representation factory. This makes it possible to have very
dynamic factories.

All of this is highly optimized. The representation will be created the first time you request it and then it will be
cached within the glyph. The next time you request it, the cached representation will be returned. If the glyph
is changed, the representation will automatically be destroyed. When this happens, the representation will not be
recreated automatically. It will be recreated the next time you ask for it.

Destroying representations

You can now also specify which notifications should destroy representations. (Previously, any change to a glyph would
destroy all representations. That wasn’t ideal. Changing the glyph.note would destroy the expensive-to-calculate
bounding box representation.)

Each class has a list of notifications that it posts. When you register a factory, you can give a list of notification names
that should destroy representations created by the factory you are registering. Here’s an example:

def layerCMAPRepresentationFactory(layer):
cmap = {}
for g in layer:

if g.unicode is not None:
cmap[chr(g.unicode)] = g.name

return cmap

registerRepresentationFactory(Layer, "CMAP", layerCMAPRepresentationFactory,
→˓destructiveNotifications=["Layer.GlyphUnicodesChanged"])

8 Chapter 2. Concepts

CHAPTER 3

Objects

3.1 Font

See also:

Notifications: The Font object uses notifications to notify observers of changes.

External Changes: The Font object can observe the files within the UFO for external modifications.

3.1.1 Tasks

File Operations

• Font

• save()

• path

• ufoFormatVersion

• testForExternalChanges()

• reloadInfo()

• reloadKerning()

• reloadGroups()

• reloadFeatures()

• reloadLib()

9

defcon Documentation, Release 0.7.0

Sub-Objects

• info

• kerning

• groups

• features

• layers

• lib

• unicodeData

Glyphs

• Font

• newGlyph()

• insertGlyph()

• keys()

Layers

• newLayer()

Reference Data

• glyphsWithOutlines

• componentReferences

• bounds

• controlPointBounds

Changed State

• dirty

Notifications

• dispatcher

• addObserver()

• removeObserver()

• hasObserver()

10 Chapter 3. Objects

defcon Documentation, Release 0.7.0

Font

class defcon.Font(path=None, kerningClass=None, infoClass=None, groupsClass=None,
featuresClass=None, libClass=None, unicodeDataClass=None, layerSet-
Class=None, layerClass=None, imageSetClass=None, dataSetClass=None,
guidelineClass=None, glyphClass=None, glyphContourClass=None, glyph-
PointClass=None, glyphComponentClass=None, glyphAnchorClass=None,
glyphImageClass=None)

If loading from an existing UFO, path should be the path to the UFO.

If you subclass one of the sub objects, such as Glyph, the class must be registered when the font is created
for defcon to know about it. The *Class arguments allow for individual ovverrides. If None is provided for an
argument, the defcon appropriate class will be used.

This object posts the following notifications:

• Font.Changed

• Font.ReloadedGlyphs

• Font.GlyphOrderChanged

• Font.GuidelinesChanged

• Font.GuidelineWillBeDeleted

• Font.GuidelineWillBeAdded

The Font object has some dict like behavior. For example, to get a glyph:

glyph = font["aGlyphName"]

To iterate over all glyphs:

for glyph in font:

To get the number of glyphs:

glyphCount = len(font)

To find out if a font contains a particular glyph:

exists = "aGlyphName" in font

To remove a glyph:

del font["aGlyphName"]

addObserver(observer, methodName, notification, identifier=None)
Add an observer to this object’s notification dispatcher.

• observer An object that can be referenced with weakref.

• methodName A string representing the method to be called when the notification is posted.

• notification The notification that the observer should be notified of.

• identifier None or a string identifying the observation. There is no requirement that the string be
unique. A reverse domain naming scheme is recommended, but there are no requirements for the
structure of the string.

3.1. Font 11

defcon Documentation, Release 0.7.0

The method that will be called as a result of the action must accept a single notification argument. This
will be a defcon.tools.notifications.Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.addObserver(observer=observer, methodName=methodName,

notification=notification, observable=anObject, identifier=identifier)

appendGuideline(guideline)
Append guideline to the font. The guideline must be a defcon Guideline object or a subclass of that
object. An error will be raised if the guideline’s identifier conflicts with any of the identifiers within the
font.

This will post Font.GuidelinesChanged and Font.Changed notifications.

bounds
The bounds of all glyphs in the font’s main layer. This can be an expensive operation.

canRedo()
Returns a boolean indicating whether the undo manager is able to perform a redo.

canUndo()
Returns a boolean indicating whether the undo manager is able to perform an undo.

clearGuidelines()
Clear all guidelines from the font.

This posts a Font.Changed notification.

componentReferences
A dict of describing the component relationships in the font’s main layer. The dictionary is of form {base
glyph : [references]}.

controlPointBounds
The control bounds of all glyphs in the font’s main layer. This only measures the point positions, it does
not measure curves. So, curves without points at the extrema will not be properly measured. This is an
expensive operation.

data
The font’s DataSet object.

destroyAllRepresentations(notification=None)
Destroy all representations.

destroyRepresentation(name, **kwargs)
Destroy the stored representation for name and **kwargs. If no kwargs are given, any representation
with name will be destroyed regardless of the kwargs passed when the representation was created.

dirty
The dirty state of the object. True if the object has been changed. False if not. Setting this to True will
cause the base changed notification to be posted. The object will automatically maintain this attribute and
update it as you change the object.

disableNotifications(notification=None, observer=None)
Disable this object’s notifications until told to resume them.

• notification The specific notification to disable. This is optional. If no notification is given, all
notifications will be disabled.

This is a convenience method that does the same thing as:

12 Chapter 3. Objects

defcon Documentation, Release 0.7.0

dispatcher = anObject.dispatcher
dispatcher.disableNotifications(

observable=anObject, notification=notification, observer=observer)

dispatcher
The defcon.tools.notifications.NotificationCenter assigned to this font.

enableNotifications(notification=None, observer=None)
Enable this object’s notifications.

• notification The specific notification to enable. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.enableNotifications(

observable=anObject, notification=notification, observer=observer)

features
The font’s Features object.

findObservations(observer=None, notification=None, observable=None, identifier=None)
Find observations of this object matching the given arguments based on the values that were passed during
addObserver. A value of None for any of these indicates that all should be considered to match the value.
In the case of identifier, strings will be matched using fnmatch.fnmatchcase. The returned value will be a
list of dictionaries with this format:

[

{ observer=<. . . > observable=<. . . > methodName=”. . . ” notification=”. . . ” identifier=”. . . ”

}

]

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.findObservations(

observer=observer, observable=anObject,
notification=notification, identifier=identifier

)

getDataForSerialization(**kwargs)
Return a dict of data that can be pickled.

getRepresentation(name, **kwargs)
Get a representation. name must be a registered representation name. **kwargs will be passed to the
appropriate representation factory.

getSaveProgressBarTickCount(formatVersion=None)
Get the number of ticks that will be used by a progress bar in the save method. Subclasses may override
this method to implement custom saving behavior.

glyphOrder
The font’s glyph order. When setting the value must be a list of glyph names. There is no require-
ment, nor guarantee, that the list will contain only names of glyphs in the font. Setting this posts
Font.GlyphOrderChanged and Font.Changed notifications.

glyphsWithOutlines
A list of glyphs containing outlines in the font’s main layer.

3.1. Font 13

defcon Documentation, Release 0.7.0

groups
The font’s Groups object.

guidelineIndex(guideline)
Get the index for guideline.

guidelines
An ordered list of Guideline objects stored in the font. Setting this will post a Font.Changed
notification along with any notifications posted by the Font.appendGuideline() and Font.
clearGuidelines() methods.

hasCachedRepresentation(name, **kwargs)
Returns a boolean indicating if a representation for name and **kwargs is cached in the object.

hasObserver(observer, notification)
Returns a boolean indicating is the observer is registered for notification.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.hasObserver(observer=observer,

notification=notification, observable=anObject)

holdNotifications(notification=None, note=None)
Hold this object’s notifications until told to release them.

• notification The specific notification to hold. This is optional. If no notification is given, all notifica-
tions will be held.

• note An arbitrary string containing information about why the hold has been requested, the requester,
etc. This is used for reference only.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.holdNotifications(

observable=anObject, notification=notification, note=note)

identifiers
Set of identifiers for the info. This is primarily for internal use.

images
The font’s ImageSet object.

info
The font’s Info object.

insertGlyph(glyph, name=None)
Insert glyph into the font’s main layer. Optionally, the glyph can be renamed at the same time by providing
name. If a glyph with the glyph name, or the name provided as name, already exists, the existing glyph
will be replaced with the new glyph.

insertGuideline(index, guideline)
Insert guideline into the font at index. The guideline must be a defcon Guideline object or a subclass
of that object. An error will be raised if the guideline’s identifier conflicts with any of the identifiers within
the font.

This will post Font.GuidelinesChanged and Font.Changed notifications.

kerning
The font’s Kerning object.

14 Chapter 3. Objects

defcon Documentation, Release 0.7.0

kerningGroupConversionRenameMaps
The kerning group rename map that will be used when writing UFO 1 and UFO 2. This follows the format
defined in UFOReader. This will only not be None if it has been set or this object was loaded from a UFO
1 or UFO 2 file.

layers
The font’s LayerSet object.

lib
The font’s Lib object.

newGlyph(name)
Create a new glyph with name in the font’s main layer. If a glyph with that name already exists, the
existing glyph will be replaced with the new glyph.

newLayer(name)
Create a new Layer and add it to the top of the layer order.

This posts LayerSet.LayerAdded and LayerSet.Changed notifications.

path
The location of the file on disk. Setting the path should only be done when the user has moved the file in
the OS interface. Setting the path is not the same as a save operation.

postNotification(notification, data=None)
Post a notification through this object’s notification dispatcher.

• notification The name of the notification.

• data Arbitrary data that will be stored in the Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.postNotification(

notification=notification, observable=anObject, data=data)

redo()
Perform a redo if possible, or return. If redo is performed, this will post BaseObject.BeginRedo and
BaseObject.EndRedo notifications.

releaseHeldNotifications(notification=None)
Release this object’s held notifications.

• notification The specific notification to hold. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.releaseHeldNotifications(

observable=anObject, notification=notification)

reloadData(fileNames)
Reload the data files listed in fileNames from the appropriate files within the UFO. When all of the loading
is complete, a Font.ReloadedData notification will be posted.

reloadFeatures()
Reload the data in the Features object from the features.fea file in the UFO.

reloadGlyphs(glyphNames)
Deprecated! Use reloadLayers!

3.1. Font 15

defcon Documentation, Release 0.7.0

Reload the glyphs listed in glyphNames from the appropriate files within the UFO. When all of the loading
is complete, a Font.ReloadedGlyphs notification will be posted.

reloadGroups()
Reload the data in the Groups object from the groups.plist file in the UFO.

reloadImages(fileNames)
Reload the images listed in fileNames from the appropriate files within the UFO. When all of the loading
is complete, a Font.ReloadedImages notification will be posted.

reloadInfo()
Reload the data in the Info object from the fontinfo.plist file in the UFO.

reloadKerning()
Reload the data in the Kerning object from the kerning.plist file in the UFO.

This validates the kerning against the groups loaded into the font. If groups are being reloaded in the same
pass, the groups should always be reloaded before reloading the kerning.

reloadLayers(layerData)
Reload the data in the layers specfied in layerData. When all of the loading is complete,
Font.ReloadedLayers and Font.ReloadedGlyphs notifications will be posted. The layerData must be a
dictionary following this format:

{
"order" : bool, # True if you want the order releaded
"default" : bool, # True if you want the default layer reset
"layers" : {

"layer name" : {
"glyphNames" : ["glyph name 1", "glyph name 2"], # list of glyph

→˓names you want to reload
"info" : bool, # True if you want the layer info reloaded

}
}

}

reloadLib()
Reload the data in the Lib object from the lib.plist file in the UFO.

removeGuideline(guideline)
Remove guideline from the font.

This will post Font.GuidelineWillBeDeleted, Font.GuidelinesChanged and Font.Changed notifications.

removeObserver(observer, notification)
Remove an observer from this object’s notification dispatcher.

• observer A registered object.

• notification The notification that the observer was registered to be notified of.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.removeObserver(observer=observer,

notification=notification, observable=anObject)

representationKeys()
Get a list of all representation keys that are currently cached.

16 Chapter 3. Objects

defcon Documentation, Release 0.7.0

save(path=None, formatVersion=None, removeUnreferencedImages=False, progressBar=None, struc-
ture=None)

Save the font to path. If path is None, the path from the last save or when the font was first opened will be
used.

The UFO will be saved using the format found at ufoFormatVersion. This value is either the format
version from the exising UFO or the format version specified in a previous save. If neither of these is
available, the UFO will be written as format version 3. If you wish to specifiy the format version for
saving, pass the desired number as the formatVersion argument.

Optionally, the UFO can be purged of unreferenced images during this operation. To do this, pass True
as the value for the removeUnreferencedImages argument.

‘structure’ can be either None, “zip” or “package”. If it’s None, the destination UFO will use the same
structure as original, provided that is compatible with any previous UFO at the output path. If ‘structure’
is “zip” the UFO will be saved as compressed archive, else it is saved as a regular folder or “package”.

saveData(writer, saveAs=False, progressBar=None)
Save data. This method should not be called externally. Subclasses may override this method to implement
custom saving behavior.

saveFeatures(writer)
Save features. This method should not be called externally. Subclasses may override this method to
implement custom saving behavior.

saveGroups(writer)
Save groups. This method should not be called externally. Subclasses may override this method to imple-
ment custom saving behavior.

saveImages(writer, removeUnreferencedImages=False, saveAs=False, progressBar=None)
Save images. This method should not be called externally. Subclasses may override this method to imple-
ment custom saving behavior.

saveInfo(writer)
Save info. This method should not be called externally. Subclasses may override this method to implement
custom saving behavior.

saveKerning(writer)
Save kerning. This method should not be called externally. Subclasses may override this method to
implement custom saving behavior.

saveLib(writer, saveAs=False, progressBar=None)
Save lib. This method should not be called externally. Subclasses may override this method to implement
custom saving behavior.

setDataFromSerialization(data)
Restore state from the provided data-dict.

tempLib
The font’s tempLib object.

testForExternalChanges()
Test the UFO for changes that occured outside of this font’s tree of objects. This returns a dictionary
describing the changes:

{
"info" : bool, # True if changed, False if not changed
"kerning" : bool, # True if changed, False if not changed
"groups" : bool, # True if changed, False if not changed
"features" : bool, # True if changed, False if not changed
"lib" : bool, # True if changed, False if not changed

(continues on next page)

3.1. Font 17

defcon Documentation, Release 0.7.0

(continued from previous page)

"layers" : {
"defaultLayer" : bool, # True if changed, False if not changed
"order" : bool, # True if changed, False if not changed
"added" : ["layer name 1", "layer name 2"],
"deleted" : ["layer name 1", "layer name 2"],
"modified" : {

"info" : bool, # True if changed, False if not changed
"modified" : ["glyph name 1", "glyph name 2"],
"added" : ["glyph name 1", "glyph name 2"],
"deleted" : ["glyph name 1", "glyph name 2"]

}
},
"images" : {

"modified" : ["image name 1", "image name 2"],
"added" : ["image name 1", "image name 2"],
"deleted" : ["image name 1", "image name 2"],

},
"data" : {

"modified" : ["file name 1", "file name 2"],
"added" : ["file name 1", "file name 2"],
"deleted" : ["file name 1", "file name 2"],

}
}

It is important to keep in mind that the user could have created conflicting data outside of the font’s tree
of objects. For example, say the user has set font.info.unitsPerEm = 1000 inside of the font’s
Info object and the user has not saved this change. In the the font’s fontinfo.plist file, the user sets the
unitsPerEm value to 2000. Which value is current? Which value is right? defcon leaves this decision up
to you.

ufoFileStructure
The UFO file structure that will be used when saving. This is taken from a loaded UFO during __init__.
If this font was not loaded from a UFO, this will return None until the font has been saved.

ufoFormatVersion
The UFO format major version that will be used when saving. This is taken from a loaded UFO during
__init__. If this font was not loaded from a UFO, this will return None until the font has been saved.
Deprecated, use ufoFormatVersionTuple instead.

ufoFormatVersionTuple
The UFO format (major, minor) version tuple that will be used when saving. This is taken from a loaded
UFO during __init__. If this font was not loaded from a UFO, this will return None until the font has been
saved.

undo()
Perform an undo if possible, or return. If undo is performed, this will post BaseObject.BeginUndo and
BaseObject.EndUndo notifications.

undoManager
The undo manager assigned to this object.

unicodeData
The font’s UnicodeData object.

updateGlyphOrder(addedGlyph=None, removedGlyph=None)
This method tries to keep the glyph order in sync. This should not be called externally. It may be overriden
by subclasses as needed.

18 Chapter 3. Objects

defcon Documentation, Release 0.7.0

3.2 Layer

3.2.1 Layer

class defcon.Layer(layerSet=None, glyphSet=None, libClass=None, unicodeDataClass=None,
guidelineClass=None, glyphClass=None, glyphContourClass=None, glyph-
PointClass=None, glyphComponentClass=None, glyphAnchorClass=None,
glyphImageClass=None)

This object represents a layer in a LayerSet.

This object posts the following notifications:

• Layer.Changed

• Layer.GlyphsChanged

• Layer.GlyphChanged

• Layer.GlyphWillBeAdded

• Layer.GlyphAdded

• Layer.GlyphWillBeDeleted

• Layer.GlyphDeleted

• Layer.GlyphNameChanged

• Layer.GlyphUnicodesChanged

• Layer.NameChanged

• Layer.ColorChanged

• Layer.LibChanged

The Layer object has some dict like behavior. For example, to get a glyph:

glyph = layer["aGlyphName"]

To iterate over all glyphs:

for glyph in layer:

To get the number of glyphs:

glyphCount = len(layer)

To find out if a font contains a particular glyph:

exists = "aGlyphName" in layer

To remove a glyph:

del layer["aGlyphName"]

addObserver(observer, methodName, notification, identifier=None)
Add an observer to this object’s notification dispatcher.

• observer An object that can be referenced with weakref.

• methodName A string representing the method to be called when the notification is posted.

3.2. Layer 19

defcon Documentation, Release 0.7.0

• notification The notification that the observer should be notified of.

• identifier None or a string identifying the observation. There is no requirement that the string be
unique. A reverse domain naming scheme is recommended, but there are no requirements for the
structure of the string.

The method that will be called as a result of the action must accept a single notification argument. This
will be a defcon.tools.notifications.Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.addObserver(observer=observer, methodName=methodName,

notification=notification, observable=anObject, identifier=identifier)

bounds
The bounds of all glyphs in the layer. This can be an expensive operation.

canRedo()
Returns a boolean indicating whether the undo manager is able to perform a redo.

canUndo()
Returns a boolean indicating whether the undo manager is able to perform an undo.

color
The layer’s Color object. When setting, the value can be a UFO color string, a sequence of (r, g, b, a) or
a Color object. Setting this posts Layer.ColorChanged and Layer.Changed notifications.

componentReferences
A dict of describing the component relationships in the layer. The dictionary is of form {base glyph
: [references]}.

controlPointBounds
The control bounds of all glyphs in the layer. This only measures the point positions, it does not measure
curves. So, curves without points at the extrema will not be properly measured. This is an expensive
operation.

destroyAllRepresentations(notification=None)
Destroy all representations.

destroyRepresentation(name, **kwargs)
Destroy the stored representation for name and **kwargs. If no kwargs are given, any representation
with name will be destroyed regardless of the kwargs passed when the representation was created.

dirty
The dirty state of the object. True if the object has been changed. False if not. Setting this to True will
cause the base changed notification to be posted. The object will automatically maintain this attribute and
update it as you change the object.

disableNotifications(notification=None, observer=None)
Disable this object’s notifications until told to resume them.

• notification The specific notification to disable. This is optional. If no notification is given, all
notifications will be disabled.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.disableNotifications(

observable=anObject, notification=notification, observer=observer)

20 Chapter 3. Objects

defcon Documentation, Release 0.7.0

dispatcher
The defcon.tools.notifications.NotificationCenter assigned to the parent of this ob-
ject.

enableNotifications(notification=None, observer=None)
Enable this object’s notifications.

• notification The specific notification to enable. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.enableNotifications(

observable=anObject, notification=notification, observer=observer)

findObservations(observer=None, notification=None, observable=None, identifier=None)
Find observations of this object matching the given arguments based on the values that were passed during
addObserver. A value of None for any of these indicates that all should be considered to match the value.
In the case of identifier, strings will be matched using fnmatch.fnmatchcase. The returned value will be a
list of dictionaries with this format:

[

{ observer=<. . . > observable=<. . . > methodName=”. . . ” notification=”. . . ” identifier=”. . . ”

}

]

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.findObservations(

observer=observer, observable=anObject,
notification=notification, identifier=identifier

)

font
The Font that this layer belongs to.

getDataForSerialization(**kwargs)
Return a dict of data that can be pickled.

getRepresentation(name, **kwargs)
Get a representation. name must be a registered representation name. **kwargs will be passed to the
appropriate representation factory.

getSaveProgressBarTickCount(formatVersion)
Get the number of ticks that will be used by a progress bar in the save method. This method should not be
called externally. Subclasses may override this method to implement custom saving behavior.

glyphsWithOutlines
A list of glyphs containing outlines.

hasCachedRepresentation(name, **kwargs)
Returns a boolean indicating if a representation for name and **kwargs is cached in the object.

hasObserver(observer, notification)
Returns a boolean indicating is the observer is registered for notification.

This is a convenience method that does the same thing as:

3.2. Layer 21

defcon Documentation, Release 0.7.0

dispatcher = anObject.dispatcher
dispatcher.hasObserver(observer=observer,

notification=notification, observable=anObject)

holdNotifications(notification=None, note=None)
Hold this object’s notifications until told to release them.

• notification The specific notification to hold. This is optional. If no notification is given, all notifica-
tions will be held.

• note An arbitrary string containing information about why the hold has been requested, the requester,
etc. This is used for reference only.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.holdNotifications(

observable=anObject, notification=notification, note=note)

imageReferences
A dict of describing the image file references in the layer. The dictionary is of form {image file
name : [references]}.

insertGlyph(glyph, name=None)
Insert glyph into the layer. Optionally, the glyph can be renamed at the same time by providing name.
If a glyph with the glyph name, or the name provided as name, already exists, the existing glyph will be
replaced with the new glyph.

This posts Layer.GlyphWillBeAdded, Layer.GlyphAdded and Layer.Changed notifications.

keys()
The names of all glyphs in the layer.

layerSet
The LayerSet that this layer belongs to.

lib
The layer’s Lib object.

loadGlyph(name)
Load a glyph from the glyph set. This should not be called externally, but subclasses may override it for
custom behavior.

name
The name of the layer. Setting this posts Layer.NameChanged and Layer.Changed notifications.

newGlyph(name)
Create a new glyph with name. If a glyph with that name already exists, the existing glyph will be replaced
with the new glyph.

This posts Layer.GlyphWillBeAdded, Layer.GlyphAdded and Layer.Changed notifications.

postNotification(notification, data=None)
Post a notification through this object’s notification dispatcher.

• notification The name of the notification.

• data Arbitrary data that will be stored in the Notification object.

This is a convenience method that does the same thing as:

22 Chapter 3. Objects

defcon Documentation, Release 0.7.0

dispatcher = anObject.dispatcher
dispatcher.postNotification(

notification=notification, observable=anObject, data=data)

redo()
Perform a redo if possible, or return. If redo is performed, this will post BaseObject.BeginRedo and
BaseObject.EndRedo notifications.

releaseHeldNotifications(notification=None)
Release this object’s held notifications.

• notification The specific notification to hold. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.releaseHeldNotifications(

observable=anObject, notification=notification)

reloadGlyphs(glyphNames)
Reload the glyphs. This should not be called externally.

removeObserver(observer, notification)
Remove an observer from this object’s notification dispatcher.

• observer A registered object.

• notification The notification that the observer was registered to be notified of.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.removeObserver(observer=observer,

notification=notification, observable=anObject)

representationKeys()
Get a list of all representation keys that are currently cached.

save(glyphSet, saveAs=False, progressBar=None)
Save the layer. This method should not be called externally. Subclasses may override this method to
implement custom saving behavior.

saveGlyph(glyph, glyphSet, saveAs=False)
Save a glyph. This method should not be called externally. Subclasses may override this method to
implement custom saving behavior.

setDataFromSerialization(data)
Restore state from the provided data-dict.

tempLib
The layer’s tempLib object.

testForExternalChanges(reader)
Test for external changes. This should not be called externally.

undo()
Perform an undo if possible, or return. If undo is performed, this will post BaseObject.BeginUndo and
BaseObject.EndUndo notifications.

undoManager
The undo manager assigned to this object.

3.2. Layer 23

defcon Documentation, Release 0.7.0

unicodeData
The layer’s UnicodeData object.

3.3 Glyph

See also:

Notifications: The Glyph object uses notifications to notify observers of changes.

Representations: The Glyph object can maintain representations of various arbitrary types.

3.3.1 Tasks

Name and Unicodes

• name

• unicodes

• unicode

Metrics

• leftMargin

• rightMargin

• width

Reference Data

• area

• bounds

• controlPointBounds

General Editing

• clear()

• move()

Contours

• Glyph

• clearContours()

• appendContour()

• insertContour()

• contourIndex()

24 Chapter 3. Objects

defcon Documentation, Release 0.7.0

• autoContourDirection()

• correctContourDirection()

Components

• components

• clearComponents()

• appendComponent()

• componentIndex()

• insertComponent()

Anchors

• anchors

• clearAnchors()

• appendAnchor()

• anchorIndex()

• insertAnchor()

Hit Testing

• pointInside()

Pens and Drawing

• getPen()

• getPointPen()

• draw()

• drawPoints()

Representations

• getRepresentation()

• hasCachedRepresentation()

• representationKeys()

• destroyRepresentation()

• destroyAllRepresentations()

Changed State

• dirty

3.3. Glyph 25

defcon Documentation, Release 0.7.0

Notifications

• dispatcher

• addObserver()

• removeObserver()

• hasObserver()

Parent

• getParent()

• setParent()

Glyph

class defcon.Glyph(layer=None, contourClass=None, pointClass=None, componentClass=None, an-
chorClass=None, guidelineClass=None, libClass=None, imageClass=None)

This object represents a glyph and it contains contour, component, anchor and other assorted bits data about the
glyph.

This object posts the following notifications:

• Glyph.Changed

• Glyph.BeginUndo

• Glyph.EndUndo

• Glyph.BeginRedo

• Glyph.EndRedo

• Glyph.NameWillChange

• Glyph.NameChanged

• Glyph.UnicodesChanged

• Glyph.WidthChanged

• Glyph.HeightChanged

• Glyph.LeftMarginWillChange

• Glyph.LeftMarginDidChange

• Glyph.RightMarginWillChange

• Glyph.RightMarginDidChange

• Glyph.TopMarginWillChange

• Glyph.TopMarginDidChange

• Glyph.BottomMarginWillChange

• Glyph.BottomMarginDidChange

• Glyph.NoteChanged

• Glyph.LibChanged

26 Chapter 3. Objects

defcon Documentation, Release 0.7.0

• Glyph.ImageChanged

• Glyph.ImageWillBeCleared

• Glyph.ImageCleared

• Glyph.ContourWillBeAdded

• Glyph.ContourWillBeDeleted

• Glyph.ContoursChanged

• Glyph.ComponentWillBeAdded

• Glyph.ComponentWillBeDeleted

• Glyph.ComponentsChanged

• Glyph.AnchorWillBeAdded

• Glyph.AnchorWillBeDeleted

• Glyph.AnchorsChanged

• Glyph.GuidelineWillBeAdded

• Glyph.GuidelineWillBeDeleted

• Glyph.GuidelinesChanged

• Glyph.MarkColorChanged

• Glyph.VerticalOriginChanged

The Glyph object has list like behavior. This behavior allows you to interact with contour data directly. For
example, to get a particular contour:

contour = glyph[0]

To iterate over all contours:

for contour in glyph:

To get the number of contours:

contourCount = len(glyph)

To interact with components or anchors in a similar way, use the components and anchors attributes.

addObserver(observer, methodName, notification, identifier=None)
Add an observer to this object’s notification dispatcher.

• observer An object that can be referenced with weakref.

• methodName A string representing the method to be called when the notification is posted.

• notification The notification that the observer should be notified of.

• identifier None or a string identifying the observation. There is no requirement that the string be
unique. A reverse domain naming scheme is recommended, but there are no requirements for the
structure of the string.

The method that will be called as a result of the action must accept a single notification argument. This
will be a defcon.tools.notifications.Notification object.

This is a convenience method that does the same thing as:

3.3. Glyph 27

defcon Documentation, Release 0.7.0

dispatcher = anObject.dispatcher
dispatcher.addObserver(observer=observer, methodName=methodName,

notification=notification, observable=anObject, identifier=identifier)

anchorClass
The class used for anchors.

anchorIndex(anchor)
Get the index for anchor.

anchors
An ordered list of Anchor objects stored in the glyph.

appendAnchor(anchor)
Append anchor to the glyph. The anchor must be a defcon Anchor object or a subclass of that object.
An error will be raised if the anchor’s identifier conflicts with any of the identifiers within the glyph.

This will post a Glyph.Changed notification.

appendComponent(component)
Append component to the glyph. The component must be a defcon Component object or a subclass of
that object. An error will be raised if the component’s identifier conflicts with any of the identifiers within
the glyph.

This will post a Glyph.Changed notification.

appendContour(contour)
Append contour to the glyph. The contour must be a defcon Contour object or a subclass of that object.
An error will be raised if the contour’s identifier or a point identifier conflicts with any of the identifiers
within the glyph.

This will post a Glyph.Changed notification.

appendGuideline(guideline)
Append guideline to the glyph. The guideline must be a defcon Guideline object or a subclass of that
object. An error will be raised if the guideline’s identifier conflicts with any of the identifiers within the
glyph.

This will post a Glyph.Changed notification.

area
The area of the glyph’s outline.

bottomMargin
The bottom margin of the glyph. Setting this posts Glyph.HeightChanged,
Glyph.BottomMarginWillChange, Glyph.BottomMarginDidChange and Glyph.Changed notifications
among others.

bounds
The bounds of the glyph’s outline expressed as a tuple of form (xMin, yMin, xMax, yMax).

canRedo()
Returns a boolean indicating whether the undo manager is able to perform a redo.

canUndo()
Returns a boolean indicating whether the undo manager is able to perform an undo.

clear()
Clear all contours, components, anchors and guidelines from the glyph.

This posts a Glyph.Changed notification.

28 Chapter 3. Objects

defcon Documentation, Release 0.7.0

clearAnchors()
Clear all anchors from the glyph.

This posts a Glyph.Changed notification.

clearComponents()
Clear all components from the glyph.

This posts a Glyph.Changed notification.

clearContours()
Clear all contours from the glyph.

This posts a Glyph.Changed notification.

clearGuidelines()
Clear all guidelines from the glyph.

This posts a Glyph.Changed notification.

componentClass
The class used for components.

componentIndex(component)
Get the index for component.

components
An ordered list of Component objects stored in the glyph.

contourClass
The class used for contours.

contourIndex(contour)
Get the index for contour.

controlPointBounds
The control bounds of all points in the glyph. This only measures the point positions, it does not measure
curves. So, curves without points at the extrema will not be properly measured.

copyDataFromGlyph(glyph)
Copy data from glyph. This copies the following data:

width height unicodes note image contours components anchors guidelines lib ==========

The name attribute is purposefully omitted.

correctContourDirection(trueType=False, segmentLength=10)
Correct the direction of all contours in the glyph.

This posts a Glyph.Changed notification.

decomposeAllComponents()
Decompose all components in this glyph. This will preserve the identifiers in the incoming contours and
points unless there is a conflict. In that case, the conflicting incoming identifier will be discarded.

This posts Glyph.ComponentsChanged, Glyph.ContoursChanged and Glyph.Changed notifications.

decomposeComponent(component)
Decompose component. This will preserve the identifiers in the incoming contours and points unless there
is a conflict. In that case, the conflicting incoming identifier will be discarded.

This posts Glyph.ComponentsChanged, Glyph.ContoursChanged and Glyph.Changed notifications.

destroyAllRepresentations(notification=None)
Destroy all representations.

3.3. Glyph 29

defcon Documentation, Release 0.7.0

destroyRepresentation(name, **kwargs)
Destroy the stored representation for name and **kwargs. If no kwargs are given, any representation
with name will be destroyed regardless of the kwargs passed when the representation was created.

dirty
The dirty state of the object. True if the object has been changed. False if not. Setting this to True will
cause the base changed notification to be posted. The object will automatically maintain this attribute and
update it as you change the object.

disableNotifications(notification=None, observer=None)
Disable this object’s notifications until told to resume them.

• notification The specific notification to disable. This is optional. If no notification is given, all
notifications will be disabled.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.disableNotifications(

observable=anObject, notification=notification, observer=observer)

dispatcher
The defcon.tools.notifications.NotificationCenter assigned to the parent of this ob-
ject.

draw(pen)
Draw the glyph with pen.

drawPoints(pointPen)
Draw the glyph with pointPen.

enableNotifications(notification=None, observer=None)
Enable this object’s notifications.

• notification The specific notification to enable. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.enableNotifications(

observable=anObject, notification=notification, observer=observer)

findObservations(observer=None, notification=None, observable=None, identifier=None)
Find observations of this object matching the given arguments based on the values that were passed during
addObserver. A value of None for any of these indicates that all should be considered to match the value.
In the case of identifier, strings will be matched using fnmatch.fnmatchcase. The returned value will be a
list of dictionaries with this format:

[

{ observer=<. . . > observable=<. . . > methodName=”. . . ” notification=”. . . ” identifier=”. . . ”

}

]

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.findObservations(

observer=observer, observable=anObject,

(continues on next page)

30 Chapter 3. Objects

defcon Documentation, Release 0.7.0

(continued from previous page)

notification=notification, identifier=identifier
)

font
The Font that this glyph belongs to.

getDataForSerialization(**kwargs)
Return a dict of data that can be pickled.

getPen()
Get the pen used to draw into this glyph.

getPointPen()
Get the point pen used to draw into this glyph.

getRepresentation(name, **kwargs)
Get a representation. name must be a registered representation name. **kwargs will be passed to the
appropriate representation factory.

guidelineClass
The class used for guidelines.

guidelineIndex(guideline)
Get the index for guideline.

guidelines
An ordered list of Guideline objects stored in the glyph. Setting this will post a Glyph.Changed
notification along with any notifications posted by the Glyph.appendGuideline() and Glyph.
clearGuidelines() methods.

hasCachedRepresentation(name, **kwargs)
Returns a boolean indicating if a representation for name and **kwargs is cached in the object.

hasObserver(observer, notification)
Returns a boolean indicating is the observer is registered for notification.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.hasObserver(observer=observer,

notification=notification, observable=anObject)

height
The height of the glyph. Setting this posts Glyph.HeightChanged and Glyph.Changed notifications.

holdNotifications(notification=None, note=None)
Hold this object’s notifications until told to release them.

• notification The specific notification to hold. This is optional. If no notification is given, all notifica-
tions will be held.

• note An arbitrary string containing information about why the hold has been requested, the requester,
etc. This is used for reference only.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.holdNotifications(

observable=anObject, notification=notification, note=note)

3.3. Glyph 31

defcon Documentation, Release 0.7.0

identifiers
Set of identifiers for the glyph. This is primarily for internal use.

image
The glyph’s Image object. Setting this posts Glyph.ImageChanged and Glyph.Changed notifications.

imageClass
The class used for the image.

insertAnchor(index, anchor)
Insert anchor into the glyph at index. The anchor must be a defcon Anchor object or a subclass of that
object. An error will be raised if the anchor’s identifier conflicts with any of the identifiers within the
glyph.

This will post a Glyph.Changed notification.

insertComponent(index, component)
Insert component into the glyph at index. The component must be a defcon Component object or a
subclass of that object. An error will be raised if the component’s identifier conflicts with any of the
identifiers within the glyph.

This will post a Glyph.Changed notification.

insertContour(index, contour)
Insert contour into the glyph at index. The contour must be a defcon Contour object or a subclass of
that object. An error will be raised if the contour’s identifier or a point identifier conflicts with any of the
identifiers within the glyph.

This will post a Glyph.Changed notification.

insertGuideline(index, guideline)
Insert guideline into the glyph at index. The guideline must be a defcon Guideline object or a subclass
of that object. An error will be raised if the guideline’s identifier conflicts with any of the identifiers within
the glyph.

This will post a Glyph.Changed notification.

layer
The Layer that this glyph belongs to.

layerSet
The LayerSet that this glyph belongs to.

leftMargin
The left margin of the glyph. Setting this posts Glyph.WidthChanged, Glyph.LeftMarginWillChange,
Glyph.LeftMarginDidChange and Glyph.Changed notifications among others.

lib
The glyph’s Lib object. Setting this will clear any existing lib data and post a Glyph.Changed notification
if data was replaced.

libClass
The class used for the lib.

markColor
The glyph’s mark color. When setting, the value can be a UFO color string, a sequence of (r, g, b, a) or a
Color object. Setting this posts Glyph.MarkColorChanged and Glyph.Changed notifications.

move(values)
Move all contours, components and anchors in the glyph by (x, y).

This posts a Glyph.Changed notification.

32 Chapter 3. Objects

defcon Documentation, Release 0.7.0

name
The name of the glyph. Setting this posts GLyph.NameChanged and Glyph.NameChanged notifications.

note
An arbitrary note for the glyph. Setting this will post a Glyph.Changed notification.

pointClass
The class used for points.

pointInside(coordinates, evenOdd=False)
Returns a boolean indicating if (x, y) is in the “black” area of the glyph.

postNotification(notification, data=None)
Post a notification through this object’s notification dispatcher.

• notification The name of the notification.

• data Arbitrary data that will be stored in the Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.postNotification(

notification=notification, observable=anObject, data=data)

redo()
Perform a redo if possible, or return. If redo is performed, this will post BaseObject.BeginRedo and
BaseObject.EndRedo notifications.

releaseHeldNotifications(notification=None)
Release this object’s held notifications.

• notification The specific notification to hold. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.releaseHeldNotifications(

observable=anObject, notification=notification)

removeAnchor(anchor)
Remove anchor from the glyph.

This will post a Glyph.Changed notification.

removeComponent(component)
Remove component from the glyph.

This will post a Glyph.Changed notification.

removeContour(contour)
Remove contour from the glyph.

This will post a Glyph.Changed notification.

removeGuideline(guideline)
Remove guideline from the glyph.

This will post a Glyph.Changed notification.

removeObserver(observer, notification)
Remove an observer from this object’s notification dispatcher.

• observer A registered object.

3.3. Glyph 33

defcon Documentation, Release 0.7.0

• notification The notification that the observer was registered to be notified of.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.removeObserver(observer=observer,

notification=notification, observable=anObject)

representationKeys()
Get a list of all representation keys that are currently cached.

rightMargin
The right margin of the glyph. Setting this posts Glyph.WidthChanged, Glyph.RightMarginWillChange,
Glyph.RightMarginDidChange and Glyph.Changed notifications among others.

setDataFromSerialization(data)
Restore state from the provided data-dict.

tempLib
The glyph’s tempLib object.

topMargin
The top margin of the glyph. Setting this posts Glyph.HeightChanged, Glyph.VerticalOriginChanged,
Glyph.TopMarginWillChange, Glyph.TopMarginDidChange and Glyph.Changed notifications among oth-
ers.

undo()
Perform an undo if possible, or return. If undo is performed, this will post BaseObject.BeginUndo and
BaseObject.EndUndo notifications.

undoManager
The undo manager assigned to this object.

unicode
The primary unicode value for the glyph. This is the equivalent of glyph.unicodes[0]. This is a
convenience attribute that works with the unicodes attribute.

unicodes
The list of unicode values assigned to the glyph. Setting this posts Glyph.UnicodesChanged and
Glyph.Changed notifications.

verticalOrigin
The glyph’s vertical origin. Setting this posts Glyph.VerticalOriginChanged and Glyph.Changed notifica-
tions.

width
The width of the glyph. Setting this posts Glyph.WidthChanged and Glyph.Changed notifications.

3.4 Contour

See also:

Notifications: The Contour object uses notifications to notify observers of changes.

3.4.1 Tasks

34 Chapter 3. Objects

defcon Documentation, Release 0.7.0

Reference Data

• area

• bounds

• controlPointBounds

• open

Direction

• clockwise

• reverse()

Points

• Contour

• index()

• onCurvePoints

• setStartPoint()

Segments

• segments

• removeSegment()

• positionForProspectivePointInsertionAtSegmentAndT()

• splitAndInsertPointAtSegmentAndT()

Hit Testing

• contourInside()

• pointInside()

Drawing

• draw()

• drawPoints()

Changed State

• dirty

3.4. Contour 35

defcon Documentation, Release 0.7.0

Notifications

• dispatcher

• addObserver()

• removeObserver()

• hasObserver()

Parent

• getParent()

• setParent()

Contour

class defcon.Contour(glyph=None, pointClass=None)
This object represents a contour and it contains a list of points.

This object posts the following notifications:

• Contour.Changed

• Contour.WindingDirectionChanged

• Contour.PointsChanged

• Contour.IdentifierChanged

The Contour object has list like behavior. This behavior allows you to interact with point data directly. For
example, to get a particular point:

point = contour[0]

To iterate over all points:

for point in contour:

To get the number of points:

pointCount = len(contour)

To interact with components or anchors in a similar way, use the components and anchors attributes.

addObserver(observer, methodName, notification, identifier=None)
Add an observer to this object’s notification dispatcher.

• observer An object that can be referenced with weakref.

• methodName A string representing the method to be called when the notification is posted.

• notification The notification that the observer should be notified of.

• identifier None or a string identifying the observation. There is no requirement that the string be
unique. A reverse domain naming scheme is recommended, but there are no requirements for the
structure of the string.

36 Chapter 3. Objects

defcon Documentation, Release 0.7.0

The method that will be called as a result of the action must accept a single notification argument. This
will be a defcon.tools.notifications.Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.addObserver(observer=observer, methodName=methodName,

notification=notification, observable=anObject, identifier=identifier)

addPoint(values, segmentType=None, smooth=False, name=None, identifier=None, **kwargs)
Standard point pen addPoint method. This should not be used externally.

appendPoint(point)
Append point to the glyph. The point must be a defcon Point object or a subclass of that object. An
error will be raised if the point’s identifier conflicts with any of the identifiers within the glyph.

This will post Contour.PointsChanged and Contour.Changed notifications.

area
The area of the contour’s outline.

beginPath(identifier=None)
Standard point pen beginPath method. This should not be used externally.

bounds
The bounds of the contour’s outline expressed as a tuple of form (xMin, yMin, xMax, yMax).

canRedo()
Returns a boolean indicating whether the undo manager is able to perform a redo.

canUndo()
Returns a boolean indicating whether the undo manager is able to perform an undo.

clear()
Clear the contents of the contour.

This posts Contour.PointsChanged and Contour.Changed notifications.

clockwise
A boolean representing if the contour has a clockwise direction. Setting this posts Con-
tour.WindingDirectionChanged and Contour.Changed notifications.

contourInside(other, segmentLength=10)
Returns a boolean indicating if other is in the “black” area of the contour. This uses a flattened version
of other’s curves to calculate the location of the curves within this contour. segmentLength defines the
desired length for the flattening process. A lower value will yeild higher accuracy but will require more
computation time.

controlPointBounds
The control bounds of all points in the contour. This only measures the point positions, it does not measure
curves. So, curves without points at the extrema will not be properly measured.

destroyAllRepresentations(notification=None)
Destroy all representations.

destroyRepresentation(name, **kwargs)
Destroy the stored representation for name and **kwargs. If no kwargs are given, any representation
with name will be destroyed regardless of the kwargs passed when the representation was created.

dirty
The dirty state of the object. True if the object has been changed. False if not. Setting this to True will

3.4. Contour 37

defcon Documentation, Release 0.7.0

cause the base changed notification to be posted. The object will automatically maintain this attribute and
update it as you change the object.

disableNotifications(notification=None, observer=None)
Disable this object’s notifications until told to resume them.

• notification The specific notification to disable. This is optional. If no notification is given, all
notifications will be disabled.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.disableNotifications(

observable=anObject, notification=notification, observer=observer)

dispatcher
The defcon.tools.notifications.NotificationCenter assigned to the parent of this ob-
ject.

draw(pen)
Draw the contour with pen.

drawPoints(pointPen)
Draw the contour with pointPen.

enableNotifications(notification=None, observer=None)
Enable this object’s notifications.

• notification The specific notification to enable. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.enableNotifications(

observable=anObject, notification=notification, observer=observer)

endPath()
Standard point pen endPath method. This should not be used externally.

findObservations(observer=None, notification=None, observable=None, identifier=None)
Find observations of this object matching the given arguments based on the values that were passed during
addObserver. A value of None for any of these indicates that all should be considered to match the value.
In the case of identifier, strings will be matched using fnmatch.fnmatchcase. The returned value will be a
list of dictionaries with this format:

[

{ observer=<. . . > observable=<. . . > methodName=”. . . ” notification=”. . . ” identifier=”. . . ”

}

]

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.findObservations(

observer=observer, observable=anObject,
notification=notification, identifier=identifier

)

font
The Font that this contour belongs to.

38 Chapter 3. Objects

defcon Documentation, Release 0.7.0

generateIdentifier()
Create a new, unique identifier for and assign it to the contour. This will post Contour.IdentifierChanged
and Contour.Changed notifications.

generateIdentifierForPoint(point)
Create a new, unique identifier for and assign it to the point. This will post Contour.Changed notification.

getDataForSerialization(**kwargs)
Return a dict of data that can be pickled.

getRepresentation(name, **kwargs)
Get a representation. name must be a registered representation name. **kwargs will be passed to the
appropriate representation factory.

glyph
The Glyph that this contour belongs to. This should not be set externally.

hasCachedRepresentation(name, **kwargs)
Returns a boolean indicating if a representation for name and **kwargs is cached in the object.

hasObserver(observer, notification)
Returns a boolean indicating is the observer is registered for notification.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.hasObserver(observer=observer,

notification=notification, observable=anObject)

holdNotifications(notification=None, note=None)
Hold this object’s notifications until told to release them.

• notification The specific notification to hold. This is optional. If no notification is given, all notifica-
tions will be held.

• note An arbitrary string containing information about why the hold has been requested, the requester,
etc. This is used for reference only.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.holdNotifications(

observable=anObject, notification=notification, note=note)

identifier
The identifier. Setting this will post Contour.IdentifierChanged and Contour.Changed notifications.

identifiers
Set of identifiers for the glyph that this contour belongs to. This is primarily for internal use.

index(point)
Get the index for point.

insertPoint(index, point)
Insert point into the contour at index. The point must be a defcon Point object or a subclass of that
object. An error will be raised if the points’s identifier conflicts with any of the identifiers within the
glyph.

This will post Contour.PointsChanged and Contour.Changed notifications.

layer
The Layer that this contour belongs to.

3.4. Contour 39

defcon Documentation, Release 0.7.0

layerSet
The LayerSet that this contour belongs to.

move(values)
Move all points in the contour by (x, y).

This will post Contour.PointsChanged and Contour.Changed notifications.

onCurvePoints
A list of all on curve points in the contour.

open
A boolean indicating if the contour is open or not.

pointClass
The class used for point.

pointInside(coordinates, evenOdd=False)
Returns a boolean indicating if (x, y) is in the “black” area of the contour.

positionForProspectivePointInsertionAtSegmentAndT(segmentIndex, t)
Get the precise coordinates and a boolean indicating if the point will be smooth for the given segmentIndex
and t.

postNotification(notification, data=None)
Post a notification through this object’s notification dispatcher.

• notification The name of the notification.

• data Arbitrary data that will be stored in the Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.postNotification(

notification=notification, observable=anObject, data=data)

redo()
Perform a redo if possible, or return. If redo is performed, this will post BaseObject.BeginRedo and
BaseObject.EndRedo notifications.

releaseHeldNotifications(notification=None)
Release this object’s held notifications.

• notification The specific notification to hold. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.releaseHeldNotifications(

observable=anObject, notification=notification)

removeObserver(observer, notification)
Remove an observer from this object’s notification dispatcher.

• observer A registered object.

• notification The notification that the observer was registered to be notified of.

This is a convenience method that does the same thing as:

40 Chapter 3. Objects

defcon Documentation, Release 0.7.0

dispatcher = anObject.dispatcher
dispatcher.removeObserver(observer=observer,

notification=notification, observable=anObject)

removePoint(point)
Remove point from the contour.

This will post Contour.PointsChanged and Contour.Changed notifications.

removeSegment(segmentIndex, preserveCurve=False)
Remove the segment at segmentIndex. If preserveCurve is True, the contour will try to preserve the
overall curve shape.

representationKeys()
Get a list of all representation keys that are currently cached.

reverse()
Reverse the direction of the contour. It’s important to note that the actual points stored in this object will
be completely replaced by new points.

This will post Contour.WindingDirectionChanged, Contour.PointsChanged and Contour.Changed notifi-
cations.

segments
A list of all points in the contour organized into segments.

setDataFromSerialization(data)
Restore state from the provided data-dict.

setStartPoint(index)
Set the point at index as the first point in the contour. This point must be an on-curve point.

This will post Contour.PointsChanged and Contour.Changed notifications.

splitAndInsertPointAtSegmentAndT(segmentIndex, t)
Insert a point into the contour for the given segmentIndex and t.

This posts a Contour.Changed notification.

undo()
Perform an undo if possible, or return. If undo is performed, this will post BaseObject.BeginUndo and
BaseObject.EndUndo notifications.

undoManager
The undo manager assigned to this object.

3.5 Component

See also:

Notifications: The Component object uses notifications to notify observers of changes.

3.5.1 Tasks

Reference Data

• bounds

3.5. Component 41

defcon Documentation, Release 0.7.0

• bounds

Properties

• baseGlyph

• transformation

Hit Testing

• pointInside()

Drawing

• draw()

• drawPoints()

Changed State

• dirty

Notifications

• dispatcher

• addObserver()

• removeObserver()

• hasObserver()

Parent

• getParent()

• setParent()

Component

class defcon.Component(glyph=None)
This object represents a reference to another glyph.

This object posts the following notifications:

• Component.Changed

• Component.BaseGlyphChanged

• Component.BaseGlyphDataChanged

• Component.TransformationChanged

• Component.IdentifierChanged

42 Chapter 3. Objects

defcon Documentation, Release 0.7.0

addObserver(observer, methodName, notification, identifier=None)
Add an observer to this object’s notification dispatcher.

• observer An object that can be referenced with weakref.

• methodName A string representing the method to be called when the notification is posted.

• notification The notification that the observer should be notified of.

• identifier None or a string identifying the observation. There is no requirement that the string be
unique. A reverse domain naming scheme is recommended, but there are no requirements for the
structure of the string.

The method that will be called as a result of the action must accept a single notification argument. This
will be a defcon.tools.notifications.Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.addObserver(observer=observer, methodName=methodName,

notification=notification, observable=anObject, identifier=identifier)

baseGlyph
The glyph that the components references. Setting this will post Component.BaseGlyphChanged and
Component.Changed notifications.

bounds
The bounds of the components’s outline expressed as a tuple of form (xMin, yMin, xMax, yMax).

canRedo()
Returns a boolean indicating whether the undo manager is able to perform a redo.

canUndo()
Returns a boolean indicating whether the undo manager is able to perform an undo.

controlPointBounds
The control bounds of all points in the components. This only measures the point positions, it does not
measure curves. So, curves without points at the extrema will not be properly measured.

destroyAllRepresentations(notification=None)
Destroy all representations.

destroyRepresentation(name, **kwargs)
Destroy the stored representation for name and **kwargs. If no kwargs are given, any representation
with name will be destroyed regardless of the kwargs passed when the representation was created.

dirty
The dirty state of the object. True if the object has been changed. False if not. Setting this to True will
cause the base changed notification to be posted. The object will automatically maintain this attribute and
update it as you change the object.

disableNotifications(notification=None, observer=None)
Disable this object’s notifications until told to resume them.

• notification The specific notification to disable. This is optional. If no notification is given, all
notifications will be disabled.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.disableNotifications(

observable=anObject, notification=notification, observer=observer)

3.5. Component 43

defcon Documentation, Release 0.7.0

dispatcher
The defcon.tools.notifications.NotificationCenter assigned to the parent of this ob-
ject.

draw(pen)
Draw the component with pen.

drawPoints(pointPen)
Draw the component with pointPen.

enableNotifications(notification=None, observer=None)
Enable this object’s notifications.

• notification The specific notification to enable. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.enableNotifications(

observable=anObject, notification=notification, observer=observer)

findObservations(observer=None, notification=None, observable=None, identifier=None)
Find observations of this object matching the given arguments based on the values that were passed during
addObserver. A value of None for any of these indicates that all should be considered to match the value.
In the case of identifier, strings will be matched using fnmatch.fnmatchcase. The returned value will be a
list of dictionaries with this format:

[

{ observer=<. . . > observable=<. . . > methodName=”. . . ” notification=”. . . ” identifier=”. . . ”

}

]

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.findObservations(

observer=observer, observable=anObject,
notification=notification, identifier=identifier

)

font
The Font that this component belongs to.

generateIdentifier()
Create a new, unique identifier for and assign it to the contour. This will post Component.IdentifierChanged
and Component.Changed notifications.

getDataForSerialization(**kwargs)
Return a dict of data that can be pickled.

getRepresentation(name, **kwargs)
Get a representation. name must be a registered representation name. **kwargs will be passed to the
appropriate representation factory.

glyph
The Glyph that this component belongs to. This should not be set externally.

hasCachedRepresentation(name, **kwargs)
Returns a boolean indicating if a representation for name and **kwargs is cached in the object.

44 Chapter 3. Objects

defcon Documentation, Release 0.7.0

hasObserver(observer, notification)
Returns a boolean indicating is the observer is registered for notification.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.hasObserver(observer=observer,

notification=notification, observable=anObject)

holdNotifications(notification=None, note=None)
Hold this object’s notifications until told to release them.

• notification The specific notification to hold. This is optional. If no notification is given, all notifica-
tions will be held.

• note An arbitrary string containing information about why the hold has been requested, the requester,
etc. This is used for reference only.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.holdNotifications(

observable=anObject, notification=notification, note=note)

identifier
The identifier. Setting this will post Component.IdentifierChanged and Component.Changed notifications.

identifiers
Set of identifiers for the glyph that this component belongs to. This is primarily for internal use.

layer
The Layer that this component belongs to.

layerSet
The LayerSet that this component belongs to.

move(values)
Move the component by (x, y).

This posts Component.TransformationChanged and Component.Changed notifications.

pointInside(coordinates, evenOdd=False)
Returns a boolean indicating if (x, y) is in the “black” area of the component.

postNotification(notification, data=None)
Post a notification through this object’s notification dispatcher.

• notification The name of the notification.

• data Arbitrary data that will be stored in the Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.postNotification(

notification=notification, observable=anObject, data=data)

redo()
Perform a redo if possible, or return. If redo is performed, this will post BaseObject.BeginRedo and
BaseObject.EndRedo notifications.

releaseHeldNotifications(notification=None)
Release this object’s held notifications.

3.5. Component 45

defcon Documentation, Release 0.7.0

• notification The specific notification to hold. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.releaseHeldNotifications(

observable=anObject, notification=notification)

removeObserver(observer, notification)
Remove an observer from this object’s notification dispatcher.

• observer A registered object.

• notification The notification that the observer was registered to be notified of.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.removeObserver(observer=observer,

notification=notification, observable=anObject)

representationKeys()
Get a list of all representation keys that are currently cached.

setDataFromSerialization(data)
Restore state from the provided data-dict.

transformation
The transformation matrix for the component. Setting this will post Component.TransformationChanged
and Component.Changed notifications.

undo()
Perform an undo if possible, or return. If undo is performed, this will post BaseObject.BeginUndo and
BaseObject.EndUndo notifications.

undoManager
The undo manager assigned to this object.

3.6 Point

Note: This object is not a subclass of BaseObject and therefore it does not produce notifications or have any
parent attributes. This may change in the future.

3.6.1 Tasks

Position

• x

• y

46 Chapter 3. Objects

defcon Documentation, Release 0.7.0

Type

• segmentType

• smooth

Move

• move

Point

class defcon.Point(coordinates, segmentType=None, smooth=False, name=None, identifier=None)
This object represents a single point.

identifier
The identifier.

move(values)
Move the component by (x, y).

name
An arbitrary name for the point.

segmentType
The segment type. The positibilies are move, line, curve, qcurve and None (indicating that this is an
off-curve point).

smooth
A boolean indicating the smooth state of the point.

x
The x coordinate.

y
The y coordinate.

3.7 Anchor

See also:

Notifications: The Anchor object uses notifications to notify observers of changes.

3.7.1 Tasks

Position

• x

• y

Name

• name

3.7. Anchor 47

defcon Documentation, Release 0.7.0

Move

• move

Notifications

• dispatcher

• addObserver()

• removeObserver()

• hasObserver()

Parent

• getParent()

• setParent()

Anchor

class defcon.Anchor(glyph=None, anchorDict=None)
This object represents an anchor point.

This object posts the following notifications:

• Anchor.Changed

• Anchor.XChanged

• Anchor.YChanged

• Anchor.NameChanged

• Anchor.ColorChanged

• Anchor.IdentifierChanged

During initialization an anchor dictionary can be passed. If so, the new object will be populated with the data
from the dictionary.

addObserver(observer, methodName, notification, identifier=None)
Add an observer to this object’s notification dispatcher.

• observer An object that can be referenced with weakref.

• methodName A string representing the method to be called when the notification is posted.

• notification The notification that the observer should be notified of.

• identifier None or a string identifying the observation. There is no requirement that the string be
unique. A reverse domain naming scheme is recommended, but there are no requirements for the
structure of the string.

The method that will be called as a result of the action must accept a single notification argument. This
will be a defcon.tools.notifications.Notification object.

This is a convenience method that does the same thing as:

48 Chapter 3. Objects

defcon Documentation, Release 0.7.0

dispatcher = anObject.dispatcher
dispatcher.addObserver(observer=observer, methodName=methodName,

notification=notification, observable=anObject, identifier=identifier)

canRedo()
Returns a boolean indicating whether the undo manager is able to perform a redo.

canUndo()
Returns a boolean indicating whether the undo manager is able to perform an undo.

clear()→ None. Remove all items from D.

color
The anchors’s Color object. When setting, the value can be a UFO color string, a sequence of (r, g, b, a)
or a Color object. Setting this posts Anchor.ColorChanged and Anchor.Changed notifications.

copy()→ a shallow copy of D

destroyAllRepresentations(notification=None)
Destroy all representations.

destroyRepresentation(name, **kwargs)
Destroy the stored representation for name and **kwargs. If no kwargs are given, any representation
with name will be destroyed regardless of the kwargs passed when the representation was created.

dirty
The dirty state of the object. True if the object has been changed. False if not. Setting this to True will
cause the base changed notification to be posted. The object will automatically maintain this attribute and
update it as you change the object.

disableNotifications(notification=None, observer=None)
Disable this object’s notifications until told to resume them.

• notification The specific notification to disable. This is optional. If no notification is given, all
notifications will be disabled.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.disableNotifications(

observable=anObject, notification=notification, observer=observer)

dispatcher
The defcon.tools.notifications.NotificationCenter assigned to the parent of this ob-
ject.

enableNotifications(notification=None, observer=None)
Enable this object’s notifications.

• notification The specific notification to enable. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.enableNotifications(

observable=anObject, notification=notification, observer=observer)

findObservations(observer=None, notification=None, observable=None, identifier=None)
Find observations of this object matching the given arguments based on the values that were passed during
addObserver. A value of None for any of these indicates that all should be considered to match the value.

3.7. Anchor 49

defcon Documentation, Release 0.7.0

In the case of identifier, strings will be matched using fnmatch.fnmatchcase. The returned value will be a
list of dictionaries with this format:

[

{ observer=<. . . > observable=<. . . > methodName=”. . . ” notification=”. . . ” identifier=”. . . ”

}

]

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.findObservations(

observer=observer, observable=anObject,
notification=notification, identifier=identifier

)

font
The Font that this anchor belongs to.

fromkeys()
Create a new dictionary with keys from iterable and values set to value.

generateIdentifier()
Create a new, unique identifier for and assign it to the guideline. This will post Anchor.IdentifierChanged
and Anchor.Changed notifications.

get()
Return the value for key if key is in the dictionary, else default.

getDataForSerialization(**kwargs)
Return a dict of data that can be pickled.

getRepresentation(name, **kwargs)
Get a representation. name must be a registered representation name. **kwargs will be passed to the
appropriate representation factory.

glyph
The Glyph that this anchor belongs to. This should not be set externally.

hasCachedRepresentation(name, **kwargs)
Returns a boolean indicating if a representation for name and **kwargs is cached in the object.

hasObserver(observer, notification)
Returns a boolean indicating is the observer is registered for notification.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.hasObserver(observer=observer,

notification=notification, observable=anObject)

holdNotifications(notification=None, note=None)
Hold this object’s notifications until told to release them.

• notification The specific notification to hold. This is optional. If no notification is given, all notifica-
tions will be held.

• note An arbitrary string containing information about why the hold has been requested, the requester,
etc. This is used for reference only.

50 Chapter 3. Objects

defcon Documentation, Release 0.7.0

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.holdNotifications(

observable=anObject, notification=notification, note=note)

identifier
The identifier. Setting this will post Anchor.IdentifierChanged and Anchor.Changed notifications.

identifiers
Set of identifiers for the glyph that this anchor belongs to. This is primarily for internal use.

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

layer
The Layer that this anchor belongs to.

layerSet
The LayerSet that this anchor belongs to.

move(values)
Move the anchor by (x, y).

This will post Anchor.XChange, Anchor.YChanged and Anchor.Changed notifications if anything changed.

name
The name. Setting this will post Anchor.NameChanged and Anchor.Changed notifications.

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

postNotification(notification, data=None)
Post a notification through this object’s notification dispatcher.

• notification The name of the notification.

• data Arbitrary data that will be stored in the Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.postNotification(

notification=notification, observable=anObject, data=data)

redo()
Perform a redo if possible, or return. If redo is performed, this will post BaseObject.BeginRedo and
BaseObject.EndRedo notifications.

releaseHeldNotifications(notification=None)
Release this object’s held notifications.

• notification The specific notification to hold. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.releaseHeldNotifications(

observable=anObject, notification=notification)

3.7. Anchor 51

defcon Documentation, Release 0.7.0

removeObserver(observer, notification)
Remove an observer from this object’s notification dispatcher.

• observer A registered object.

• notification The notification that the observer was registered to be notified of.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.removeObserver(observer=observer,

notification=notification, observable=anObject)

representationKeys()
Get a list of all representation keys that are currently cached.

setDataFromSerialization(data)
Restore state from the provided data-dict.

setdefault()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

undo()
Perform an undo if possible, or return. If undo is performed, this will post BaseObject.BeginUndo and
BaseObject.EndUndo notifications.

undoManager
The undo manager assigned to this object.

update([E], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()→ an object providing a view on D’s values

x
The x coordinate. Setting this will post Anchor.XChanged and Anchor.Changed notifications.

y
The y coordinate. Setting this will post Anchor.YChanged and Anchor.Changed notifications.

3.8 Info

See also:

Notifications: The Info object uses notifications to notify observers of changes.

3.8.1 Tasks

Generic Identification

• familyName

• styleName

• styleMapFamilyName

• styleMapStyleName

52 Chapter 3. Objects

defcon Documentation, Release 0.7.0

• versionMajor

• versionMinor

• year

Generic Legal

• copyright

• trademark

Generic Dimensions

• unitsPerEm

• descender

• xHeight

• capHeight

• ascender

• italicAngle

Generic Miscellaneous

• note

OpenType head Table

• openTypeHeadCreated

• openTypeHeadLowestRecPPEM

• openTypeHeadFlags

OpenType hhea Table

• openTypeHheaAscender

• openTypeHheaDescender

• openTypeHheaLineGap

• openTypeHheaCaretSlopeRise

• openTypeHheaCaretSlopeRun

• openTypeHheaCaretOffset

3.8. Info 53

defcon Documentation, Release 0.7.0

OpenType name Table

• openTypeNameDesigner

• openTypeNameDesignerURL

• openTypeNameManufacturer

• openTypeNameManufacturerURL

• openTypeNameLicense

• openTypeNameLicenseURL

• openTypeNameVersion

• openTypeNameUniqueID

• openTypeNameDescription

• openTypeNamePreferredFamilyName

• openTypeNamePreferredSubfamilyName

• openTypeNameCompatibleFullName

• openTypeNameSampleText

• openTypeNameWWSFamilyName

• openTypeNameWWSSubfamilyName

OpenType OS/2 Table

• openTypeOS2WidthClass

• openTypeOS2WeightClass

• openTypeOS2Selection

• openTypeOS2VendorID

• openTypeOS2Panose

• openTypeOS2FamilyClass

• openTypeOS2UnicodeRanges

• openTypeOS2CodePageRanges

• openTypeOS2TypoAscender

• openTypeOS2TypoDescender

• openTypeOS2TypoLineGap

• openTypeOS2WinAscent

• openTypeOS2WinDescent

• openTypeOS2Type

• openTypeOS2SubscriptXSize

• openTypeOS2SubscriptYSize

• openTypeOS2SubscriptXOffset

• openTypeOS2SubscriptYOffset

54 Chapter 3. Objects

defcon Documentation, Release 0.7.0

• openTypeOS2SuperscriptXSize

• openTypeOS2SuperscriptYSize

• openTypeOS2SuperscriptXOffset

• openTypeOS2SuperscriptYOffset

• openTypeOS2StrikeoutSize

• openTypeOS2StrikeoutPosition

• openTypeVheaVertTypoAscender

• openTypeVheaVertTypoDescender

• openTypeVheaVertTypoLineGap

• openTypeVheaCaretSlopeRise

• openTypeVheaCaretSlopeRun

• openTypeVheaCaretOffset

Postscript

• postscriptFontName

• postscriptFullName

• postscriptSlantAngle

• postscriptUniqueID

• postscriptUnderlineThickness

• postscriptUnderlinePosition

• postscriptIsFixedPitch

• postscriptBlueValues

• postscriptOtherBlues

• postscriptFamilyBlues

• postscriptFamilyOtherBlues

• postscriptStemSnapH

• postscriptStemSnapV

• postscriptBlueFuzz

• postscriptBlueShift

• postscriptBlueScale

• postscriptForceBold

• postscriptDefaultWidthX

• postscriptNominalWidthX

• postscriptWeightName

• postscriptDefaultCharacter

• postscriptWindowsCharacterSet

3.8. Info 55

defcon Documentation, Release 0.7.0

Macintosh FOND Resource

• macintoshFONDFamilyID

• macintoshFONDName

Info

class defcon.Info(font=None, guidelineClass=None)
This object represents info values.

This object posts the following notifications:

• Info.Changed

• Info.BeginUndo

• Info.EndUndo

• Info.BeginRedo

• Info.EndRedo

• Info.ValueChanged

Note: The documentation strings here were automatically generated from the UFO specification.

addObserver(observer, methodName, notification, identifier=None)
Add an observer to this object’s notification dispatcher.

• observer An object that can be referenced with weakref.

• methodName A string representing the method to be called when the notification is posted.

• notification The notification that the observer should be notified of.

• identifier None or a string identifying the observation. There is no requirement that the string be
unique. A reverse domain naming scheme is recommended, but there are no requirements for the
structure of the string.

The method that will be called as a result of the action must accept a single notification argument. This
will be a defcon.tools.notifications.Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.addObserver(observer=observer, methodName=methodName,

notification=notification, observable=anObject, identifier=identifier)

canRedo()
Returns a boolean indicating whether the undo manager is able to perform a redo.

canUndo()
Returns a boolean indicating whether the undo manager is able to perform an undo.

destroyAllRepresentations(notification=None)
Destroy all representations.

destroyRepresentation(name, **kwargs)
Destroy the stored representation for name and **kwargs. If no kwargs are given, any representation
with name will be destroyed regardless of the kwargs passed when the representation was created.

56 Chapter 3. Objects

http://unifiedfontobject.org/filestructure/fontinfo.html

defcon Documentation, Release 0.7.0

dirty
The dirty state of the object. True if the object has been changed. False if not. Setting this to True will
cause the base changed notification to be posted. The object will automatically maintain this attribute and
update it as you change the object.

disableNotifications(notification=None, observer=None)
Disable this object’s notifications until told to resume them.

• notification The specific notification to disable. This is optional. If no notification is given, all
notifications will be disabled.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.disableNotifications(

observable=anObject, notification=notification, observer=observer)

dispatcher
The defcon.tools.notifications.NotificationCenter assigned to the parent of this ob-
ject.

enableNotifications(notification=None, observer=None)
Enable this object’s notifications.

• notification The specific notification to enable. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.enableNotifications(

observable=anObject, notification=notification, observer=observer)

findObservations(observer=None, notification=None, observable=None, identifier=None)
Find observations of this object matching the given arguments based on the values that were passed during
addObserver. A value of None for any of these indicates that all should be considered to match the value.
In the case of identifier, strings will be matched using fnmatch.fnmatchcase. The returned value will be a
list of dictionaries with this format:

[

{ observer=<. . . > observable=<. . . > methodName=”. . . ” notification=”. . . ” identifier=”. . . ”

}

]

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.findObservations(

observer=observer, observable=anObject,
notification=notification, identifier=identifier

)

font
The Font that this object belongs to.

getDataForSerialization(**kwargs)
Return a dict of data that can be pickled.

3.8. Info 57

defcon Documentation, Release 0.7.0

getRepresentation(name, **kwargs)
Get a representation. name must be a registered representation name. **kwargs will be passed to the
appropriate representation factory.

guidelines
This is a compatibility attribute for ufoLib. It maps to Font.guidelines.

hasCachedRepresentation(name, **kwargs)
Returns a boolean indicating if a representation for name and **kwargs is cached in the object.

hasObserver(observer, notification)
Returns a boolean indicating is the observer is registered for notification.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.hasObserver(observer=observer,

notification=notification, observable=anObject)

holdNotifications(notification=None, note=None)
Hold this object’s notifications until told to release them.

• notification The specific notification to hold. This is optional. If no notification is given, all notifica-
tions will be held.

• note An arbitrary string containing information about why the hold has been requested, the requester,
etc. This is used for reference only.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.holdNotifications(

observable=anObject, notification=notification, note=note)

postNotification(notification, data=None)
Post a notification through this object’s notification dispatcher.

• notification The name of the notification.

• data Arbitrary data that will be stored in the Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.postNotification(

notification=notification, observable=anObject, data=data)

redo()
Perform a redo if possible, or return. If redo is performed, this will post BaseObject.BeginRedo and
BaseObject.EndRedo notifications.

releaseHeldNotifications(notification=None)
Release this object’s held notifications.

• notification The specific notification to hold. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.releaseHeldNotifications(

observable=anObject, notification=notification)

58 Chapter 3. Objects

defcon Documentation, Release 0.7.0

removeObserver(observer, notification)
Remove an observer from this object’s notification dispatcher.

• observer A registered object.

• notification The notification that the observer was registered to be notified of.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.removeObserver(observer=observer,

notification=notification, observable=anObject)

representationKeys()
Get a list of all representation keys that are currently cached.

setDataFromSerialization(data)
Restore state from the provided data-dict.

undo()
Perform an undo if possible, or return. If undo is performed, this will post BaseObject.BeginUndo and
BaseObject.EndUndo notifications.

undoManager
The undo manager assigned to this object.

3.9 Kerning

See also:

Notifications: The Kerning object uses notifications to notify observers of changes.

3.9.1 Tasks

Notifications

• dispatcher

• addObserver()

• removeObserver()

• hasObserver()

Parent

• getParent()

• setParent()

Kerning

class defcon.Kerning(font=None)
This object contains all of the kerning pairs in a font.

This object posts the following notifications:

3.9. Kerning 59

defcon Documentation, Release 0.7.0

• Kerning.Changed

• Kerning.BeginUndo

• Kerning.EndUndo

• Kerning.BeginRedo

• Kerning.EndRedo

• Kerning.PairSet

• Kerning.PairDeleted

• Kerning.Cleared

• Kerning.Updated

This object behaves like a dict. For example, to get a list of all kerning pairs:

pairs = kerning.keys()

To get all pairs including the values:

for (left, right), value in kerning.items():

To get the value for a particular pair:

value = kerning["a", "b"]

To set the value for a particular pair:

kerning["a", "b"] = 100

And so on.

Note: This object is not very smart in the way it handles zero values, exceptions, etc. This may change in the
future.

addObserver(observer, methodName, notification, identifier=None)
Add an observer to this object’s notification dispatcher.

• observer An object that can be referenced with weakref.

• methodName A string representing the method to be called when the notification is posted.

• notification The notification that the observer should be notified of.

• identifier None or a string identifying the observation. There is no requirement that the string be
unique. A reverse domain naming scheme is recommended, but there are no requirements for the
structure of the string.

The method that will be called as a result of the action must accept a single notification argument. This
will be a defcon.tools.notifications.Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.addObserver(observer=observer, methodName=methodName,

notification=notification, observable=anObject, identifier=identifier)

canRedo()
Returns a boolean indicating whether the undo manager is able to perform a redo.

60 Chapter 3. Objects

defcon Documentation, Release 0.7.0

canUndo()
Returns a boolean indicating whether the undo manager is able to perform an undo.

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

destroyAllRepresentations(notification=None)
Destroy all representations.

destroyRepresentation(name, **kwargs)
Destroy the stored representation for name and **kwargs. If no kwargs are given, any representation
with name will be destroyed regardless of the kwargs passed when the representation was created.

dirty
The dirty state of the object. True if the object has been changed. False if not. Setting this to True will
cause the base changed notification to be posted. The object will automatically maintain this attribute and
update it as you change the object.

disableNotifications(notification=None, observer=None)
Disable this object’s notifications until told to resume them.

• notification The specific notification to disable. This is optional. If no notification is given, all
notifications will be disabled.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.disableNotifications(

observable=anObject, notification=notification, observer=observer)

dispatcher
The defcon.tools.notifications.NotificationCenter assigned to the parent of this ob-
ject.

enableNotifications(notification=None, observer=None)
Enable this object’s notifications.

• notification The specific notification to enable. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.enableNotifications(

observable=anObject, notification=notification, observer=observer)

find(pair, default=0)
This will find the value for pair even if pair is not specifically defined. For example: You have a group
named public.kern1.A with the contents [“A”, “Aacute”] and you have a group named public.kern2.C
with the contents [“C”, “Ccedilla”]. The only defined kerning is (“public.kern1.A”, public.kern2.C) =
100. If you use this method to find the value for (“A”, “Ccedilla”) you will get 100.

findObservations(observer=None, notification=None, observable=None, identifier=None)
Find observations of this object matching the given arguments based on the values that were passed during
addObserver. A value of None for any of these indicates that all should be considered to match the value.
In the case of identifier, strings will be matched using fnmatch.fnmatchcase. The returned value will be a
list of dictionaries with this format:

[

{ observer=<. . . > observable=<. . . > methodName=”. . . ” notification=”. . . ” identifier=”. . . ”

3.9. Kerning 61

defcon Documentation, Release 0.7.0

}

]

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.findObservations(

observer=observer, observable=anObject,
notification=notification, identifier=identifier

)

font
The Font that this object belongs to.

fromkeys()
Create a new dictionary with keys from iterable and values set to value.

get(pair, default=0)
Return the value for key if key is in the dictionary, else default.

getDataForSerialization(**kwargs)
Return a dict of data that can be pickled.

getRepresentation(name, **kwargs)
Get a representation. name must be a registered representation name. **kwargs will be passed to the
appropriate representation factory.

hasCachedRepresentation(name, **kwargs)
Returns a boolean indicating if a representation for name and **kwargs is cached in the object.

hasObserver(observer, notification)
Returns a boolean indicating is the observer is registered for notification.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.hasObserver(observer=observer,

notification=notification, observable=anObject)

holdNotifications(notification=None, note=None)
Hold this object’s notifications until told to release them.

• notification The specific notification to hold. This is optional. If no notification is given, all notifica-
tions will be held.

• note An arbitrary string containing information about why the hold has been requested, the requester,
etc. This is used for reference only.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.holdNotifications(

observable=anObject, notification=notification, note=note)

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

62 Chapter 3. Objects

defcon Documentation, Release 0.7.0

popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

postNotification(notification, data=None)
Post a notification through this object’s notification dispatcher.

• notification The name of the notification.

• data Arbitrary data that will be stored in the Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.postNotification(

notification=notification, observable=anObject, data=data)

redo()
Perform a redo if possible, or return. If redo is performed, this will post BaseObject.BeginRedo and
BaseObject.EndRedo notifications.

releaseHeldNotifications(notification=None)
Release this object’s held notifications.

• notification The specific notification to hold. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.releaseHeldNotifications(

observable=anObject, notification=notification)

removeObserver(observer, notification)
Remove an observer from this object’s notification dispatcher.

• observer A registered object.

• notification The notification that the observer was registered to be notified of.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.removeObserver(observer=observer,

notification=notification, observable=anObject)

representationKeys()
Get a list of all representation keys that are currently cached.

setDataFromSerialization(data)
Restore state from the provided data-dict.

setdefault()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

undo()
Perform an undo if possible, or return. If undo is performed, this will post BaseObject.BeginUndo and
BaseObject.EndUndo notifications.

undoManager
The undo manager assigned to this object.

3.9. Kerning 63

defcon Documentation, Release 0.7.0

update([E], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()→ an object providing a view on D’s values

3.10 Groups

See also:

Notifications: The Groups object uses notifications to notify observers of changes.

3.10.1 Tasks

Notifications

• dispatcher

• addObserver()

• removeObserver()

• hasObserver()

Parent

• getParent()

• setParent()

Groups

class defcon.Groups(font=None)
This object contains all of the groups in a font.

This object posts the following notifications:

• Groups.Changed

• Groups.BeginUndo

• Groups.EndUndo

• Groups.BeginRedo

• Groups.EndRedo

• Groups.GroupSet

• Groups.GroupDeleted

• Groups.Cleared

• Groups.Updated

This object behaves like a dict. The keys are group names and the values are lists of glyph names:

64 Chapter 3. Objects

defcon Documentation, Release 0.7.0

{
"myGroup" : ["a", "b"],
"myOtherGroup" : ["a.alt", "g.alt"],

}

The API for interacting with the data is the same as a standard dict. For example, to get a list of all group names:

groupNames = groups.keys()

To get all groups including the glyph lists:

for groupName, glyphList in groups.items():

To get the glyph list for a particular group name:

glyphList = groups["myGroup"]

To set the glyph list for a particular group name:

groups["myGroup"] = ["x", "y", "z"]

And so on.

Note: You should not modify the group list and expect the object to know about it. For example, this could
cause your changes to be lost:

glyphList = groups["myGroups"]
glyphList.append("n")

To make sure the change is noticed, reset the list into the object:

glyphList = groups["myGroups"]
glyphList.append("n")
groups["myGroups"] = glyphList

This may change in the future.

addObserver(observer, methodName, notification, identifier=None)
Add an observer to this object’s notification dispatcher.

• observer An object that can be referenced with weakref.

• methodName A string representing the method to be called when the notification is posted.

• notification The notification that the observer should be notified of.

• identifier None or a string identifying the observation. There is no requirement that the string be
unique. A reverse domain naming scheme is recommended, but there are no requirements for the
structure of the string.

The method that will be called as a result of the action must accept a single notification argument. This
will be a defcon.tools.notifications.Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.addObserver(observer=observer, methodName=methodName,

notification=notification, observable=anObject, identifier=identifier)

3.10. Groups 65

defcon Documentation, Release 0.7.0

canRedo()
Returns a boolean indicating whether the undo manager is able to perform a redo.

canUndo()
Returns a boolean indicating whether the undo manager is able to perform an undo.

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

destroyAllRepresentations(notification=None)
Destroy all representations.

destroyRepresentation(name, **kwargs)
Destroy the stored representation for name and **kwargs. If no kwargs are given, any representation
with name will be destroyed regardless of the kwargs passed when the representation was created.

dirty
The dirty state of the object. True if the object has been changed. False if not. Setting this to True will
cause the base changed notification to be posted. The object will automatically maintain this attribute and
update it as you change the object.

disableNotifications(notification=None, observer=None)
Disable this object’s notifications until told to resume them.

• notification The specific notification to disable. This is optional. If no notification is given, all
notifications will be disabled.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.disableNotifications(

observable=anObject, notification=notification, observer=observer)

dispatcher
The defcon.tools.notifications.NotificationCenter assigned to the parent of this ob-
ject.

enableNotifications(notification=None, observer=None)
Enable this object’s notifications.

• notification The specific notification to enable. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.enableNotifications(

observable=anObject, notification=notification, observer=observer)

findObservations(observer=None, notification=None, observable=None, identifier=None)
Find observations of this object matching the given arguments based on the values that were passed during
addObserver. A value of None for any of these indicates that all should be considered to match the value.
In the case of identifier, strings will be matched using fnmatch.fnmatchcase. The returned value will be a
list of dictionaries with this format:

[

{ observer=<. . . > observable=<. . . > methodName=”. . . ” notification=”. . . ” identifier=”. . . ”

}

]

66 Chapter 3. Objects

defcon Documentation, Release 0.7.0

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.findObservations(

observer=observer, observable=anObject,
notification=notification, identifier=identifier

)

font
The Font that this object belongs to.

fromkeys()
Create a new dictionary with keys from iterable and values set to value.

get()
Return the value for key if key is in the dictionary, else default.

getDataForSerialization(**kwargs)
Return a dict of data that can be pickled.

getRepresentation(name, **kwargs)
Get a representation. name must be a registered representation name. **kwargs will be passed to the
appropriate representation factory.

hasCachedRepresentation(name, **kwargs)
Returns a boolean indicating if a representation for name and **kwargs is cached in the object.

hasObserver(observer, notification)
Returns a boolean indicating is the observer is registered for notification.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.hasObserver(observer=observer,

notification=notification, observable=anObject)

holdNotifications(notification=None, note=None)
Hold this object’s notifications until told to release them.

• notification The specific notification to hold. This is optional. If no notification is given, all notifica-
tions will be held.

• note An arbitrary string containing information about why the hold has been requested, the requester,
etc. This is used for reference only.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.holdNotifications(

observable=anObject, notification=notification, note=note)

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

postNotification(notification, data=None)
Post a notification through this object’s notification dispatcher.

3.10. Groups 67

defcon Documentation, Release 0.7.0

• notification The name of the notification.

• data Arbitrary data that will be stored in the Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.postNotification(

notification=notification, observable=anObject, data=data)

redo()
Perform a redo if possible, or return. If redo is performed, this will post BaseObject.BeginRedo and
BaseObject.EndRedo notifications.

releaseHeldNotifications(notification=None)
Release this object’s held notifications.

• notification The specific notification to hold. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.releaseHeldNotifications(

observable=anObject, notification=notification)

removeObserver(observer, notification)
Remove an observer from this object’s notification dispatcher.

• observer A registered object.

• notification The notification that the observer was registered to be notified of.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.removeObserver(observer=observer,

notification=notification, observable=anObject)

representationKeys()
Get a list of all representation keys that are currently cached.

setDataFromSerialization(data)
Restore state from the provided data-dict.

setdefault()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

undo()
Perform an undo if possible, or return. If undo is performed, this will post BaseObject.BeginUndo and
BaseObject.EndUndo notifications.

undoManager
The undo manager assigned to this object.

update([E], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()→ an object providing a view on D’s values

68 Chapter 3. Objects

defcon Documentation, Release 0.7.0

3.11 Features

See also:

Notifications: The Features object uses notifications to notify observers of changes.

3.11.1 Tasks

Feature Text

• text

Notifications

• dispatcher

• addObserver()

• removeObserver()

• hasObserver()

Parent

• getParent()

• setParent()

Features

class defcon.Features(font=None)
This object contais the test represening features in the font.

This object posts the following notifications:

• Features.Changed

• Features.BeginUndo

• Features.EndUndo

• Features.BeginRedo

• Features.EndRedo

• Features.TextChanged

addObserver(observer, methodName, notification, identifier=None)
Add an observer to this object’s notification dispatcher.

• observer An object that can be referenced with weakref.

• methodName A string representing the method to be called when the notification is posted.

• notification The notification that the observer should be notified of.

3.11. Features 69

defcon Documentation, Release 0.7.0

• identifier None or a string identifying the observation. There is no requirement that the string be
unique. A reverse domain naming scheme is recommended, but there are no requirements for the
structure of the string.

The method that will be called as a result of the action must accept a single notification argument. This
will be a defcon.tools.notifications.Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.addObserver(observer=observer, methodName=methodName,

notification=notification, observable=anObject, identifier=identifier)

canRedo()
Returns a boolean indicating whether the undo manager is able to perform a redo.

canUndo()
Returns a boolean indicating whether the undo manager is able to perform an undo.

destroyAllRepresentations(notification=None)
Destroy all representations.

destroyRepresentation(name, **kwargs)
Destroy the stored representation for name and **kwargs. If no kwargs are given, any representation
with name will be destroyed regardless of the kwargs passed when the representation was created.

dirty
The dirty state of the object. True if the object has been changed. False if not. Setting this to True will
cause the base changed notification to be posted. The object will automatically maintain this attribute and
update it as you change the object.

disableNotifications(notification=None, observer=None)
Disable this object’s notifications until told to resume them.

• notification The specific notification to disable. This is optional. If no notification is given, all
notifications will be disabled.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.disableNotifications(

observable=anObject, notification=notification, observer=observer)

dispatcher
The defcon.tools.notifications.NotificationCenter assigned to the parent of this ob-
ject.

enableNotifications(notification=None, observer=None)
Enable this object’s notifications.

• notification The specific notification to enable. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.enableNotifications(

observable=anObject, notification=notification, observer=observer)

findObservations(observer=None, notification=None, observable=None, identifier=None)
Find observations of this object matching the given arguments based on the values that were passed during
addObserver. A value of None for any of these indicates that all should be considered to match the value.

70 Chapter 3. Objects

defcon Documentation, Release 0.7.0

In the case of identifier, strings will be matched using fnmatch.fnmatchcase. The returned value will be a
list of dictionaries with this format:

[

{ observer=<. . . > observable=<. . . > methodName=”. . . ” notification=”. . . ” identifier=”. . . ”

}

]

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.findObservations(

observer=observer, observable=anObject,
notification=notification, identifier=identifier

)

font
The Font that this object belongs to.

getDataForSerialization(**kwargs)
Return a dict of data that can be pickled.

getRepresentation(name, **kwargs)
Get a representation. name must be a registered representation name. **kwargs will be passed to the
appropriate representation factory.

hasCachedRepresentation(name, **kwargs)
Returns a boolean indicating if a representation for name and **kwargs is cached in the object.

hasObserver(observer, notification)
Returns a boolean indicating is the observer is registered for notification.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.hasObserver(observer=observer,

notification=notification, observable=anObject)

holdNotifications(notification=None, note=None)
Hold this object’s notifications until told to release them.

• notification The specific notification to hold. This is optional. If no notification is given, all notifica-
tions will be held.

• note An arbitrary string containing information about why the hold has been requested, the requester,
etc. This is used for reference only.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.holdNotifications(

observable=anObject, notification=notification, note=note)

postNotification(notification, data=None)
Post a notification through this object’s notification dispatcher.

• notification The name of the notification.

• data Arbitrary data that will be stored in the Notification object.

3.11. Features 71

defcon Documentation, Release 0.7.0

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.postNotification(

notification=notification, observable=anObject, data=data)

redo()
Perform a redo if possible, or return. If redo is performed, this will post BaseObject.BeginRedo and
BaseObject.EndRedo notifications.

releaseHeldNotifications(notification=None)
Release this object’s held notifications.

• notification The specific notification to hold. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.releaseHeldNotifications(

observable=anObject, notification=notification)

removeObserver(observer, notification)
Remove an observer from this object’s notification dispatcher.

• observer A registered object.

• notification The notification that the observer was registered to be notified of.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.removeObserver(observer=observer,

notification=notification, observable=anObject)

representationKeys()
Get a list of all representation keys that are currently cached.

setDataFromSerialization(data)
Restore state from the provided data-dict.

text
The raw feature text. Setting this post Features.TextChanged and Features.Changed notifications.

undo()
Perform an undo if possible, or return. If undo is performed, this will post BaseObject.BeginUndo and
BaseObject.EndUndo notifications.

undoManager
The undo manager assigned to this object.

3.12 Lib

See also:

Notifications: The Lib object uses notifications to notify observers of changes.

72 Chapter 3. Objects

defcon Documentation, Release 0.7.0

3.12.1 Tasks

Notifications

• dispatcher

• addObserver()

• removeObserver()

• hasObserver()

Parent

• getParent()

• setParent()

Lib

class defcon.Lib(font=None, layer=None, glyph=None)
This object contains arbitrary data.

This object posts the following notifications:

• Lib.Changed

• Lib.BeginUndo

• Lib.EndUndo

• Lib.BeginRedo

• Lib.EndRedo

• Lib.ItemSet

• Lib.ItemDeleted

• Lib.Cleared

• Lib.Updated

This object behaves like a dict. For example, to get a particular item from the lib:

data = lib["com.typesupply.someApplication.blah"]

To set the glyph list for a particular group name:

lib["com.typesupply.someApplication.blah"] = 123

And so on.

Note 1: It is best to keep the data below the top level as shallow as possible. Changes below the top level will
go unnoticed by the defcon change notification system. These changes will be saved the next time you save the
font, however.

Note 2: The keys used for storing data in the lib should follow the reverse domain naming convention detailed
in the UFO specification.

addObserver(observer, methodName, notification, identifier=None)
Add an observer to this object’s notification dispatcher.

3.12. Lib 73

http://unifiedfontobject.org/filestructure/lib.html

defcon Documentation, Release 0.7.0

• observer An object that can be referenced with weakref.

• methodName A string representing the method to be called when the notification is posted.

• notification The notification that the observer should be notified of.

• identifier None or a string identifying the observation. There is no requirement that the string be
unique. A reverse domain naming scheme is recommended, but there are no requirements for the
structure of the string.

The method that will be called as a result of the action must accept a single notification argument. This
will be a defcon.tools.notifications.Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.addObserver(observer=observer, methodName=methodName,

notification=notification, observable=anObject, identifier=identifier)

canRedo()
Returns a boolean indicating whether the undo manager is able to perform a redo.

canUndo()
Returns a boolean indicating whether the undo manager is able to perform an undo.

clear()→ None. Remove all items from D.

copy()→ a shallow copy of D

destroyAllRepresentations(notification=None)
Destroy all representations.

destroyRepresentation(name, **kwargs)
Destroy the stored representation for name and **kwargs. If no kwargs are given, any representation
with name will be destroyed regardless of the kwargs passed when the representation was created.

dirty
The dirty state of the object. True if the object has been changed. False if not. Setting this to True will
cause the base changed notification to be posted. The object will automatically maintain this attribute and
update it as you change the object.

disableNotifications(notification=None, observer=None)
Disable this object’s notifications until told to resume them.

• notification The specific notification to disable. This is optional. If no notification is given, all
notifications will be disabled.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.disableNotifications(

observable=anObject, notification=notification, observer=observer)

dispatcher
The defcon.tools.notifications.NotificationCenter assigned to the parent of this ob-
ject.

enableNotifications(notification=None, observer=None)
Enable this object’s notifications.

• notification The specific notification to enable. This is optional.

This is a convenience method that does the same thing as:

74 Chapter 3. Objects

defcon Documentation, Release 0.7.0

dispatcher = anObject.dispatcher
dispatcher.enableNotifications(

observable=anObject, notification=notification, observer=observer)

findObservations(observer=None, notification=None, observable=None, identifier=None)
Find observations of this object matching the given arguments based on the values that were passed during
addObserver. A value of None for any of these indicates that all should be considered to match the value.
In the case of identifier, strings will be matched using fnmatch.fnmatchcase. The returned value will be a
list of dictionaries with this format:

[

{ observer=<. . . > observable=<. . . > methodName=”. . . ” notification=”. . . ” identifier=”. . . ”

}

]

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.findObservations(

observer=observer, observable=anObject,
notification=notification, identifier=identifier

)

font
The Font that this object belongs to. This should not be set externally.

fromkeys()
Create a new dictionary with keys from iterable and values set to value.

get()
Return the value for key if key is in the dictionary, else default.

getDataForSerialization(**kwargs)
Return a dict of data that can be pickled.

getRepresentation(name, **kwargs)
Get a representation. name must be a registered representation name. **kwargs will be passed to the
appropriate representation factory.

glyph
The Glyph that this object belongs to (if it isn’t a font or layer lib). This should not be set externally.

hasCachedRepresentation(name, **kwargs)
Returns a boolean indicating if a representation for name and **kwargs is cached in the object.

hasObserver(observer, notification)
Returns a boolean indicating is the observer is registered for notification.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.hasObserver(observer=observer,

notification=notification, observable=anObject)

holdNotifications(notification=None, note=None)
Hold this object’s notifications until told to release them.

• notification The specific notification to hold. This is optional. If no notification is given, all notifica-
tions will be held.

3.12. Lib 75

defcon Documentation, Release 0.7.0

• note An arbitrary string containing information about why the hold has been requested, the requester,
etc. This is used for reference only.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.holdNotifications(

observable=anObject, notification=notification, note=note)

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

layer
The Layer that this object belongs to (if it isn’t a font lib). This should not be set externally.

layerSet
The LayerSet that this object belongs to (if it isn’t a font lib).

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

postNotification(notification, data=None)
Post a notification through this object’s notification dispatcher.

• notification The name of the notification.

• data Arbitrary data that will be stored in the Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.postNotification(

notification=notification, observable=anObject, data=data)

redo()
Perform a redo if possible, or return. If redo is performed, this will post BaseObject.BeginRedo and
BaseObject.EndRedo notifications.

releaseHeldNotifications(notification=None)
Release this object’s held notifications.

• notification The specific notification to hold. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.releaseHeldNotifications(

observable=anObject, notification=notification)

removeObserver(observer, notification)
Remove an observer from this object’s notification dispatcher.

• observer A registered object.

• notification The notification that the observer was registered to be notified of.

This is a convenience method that does the same thing as:

76 Chapter 3. Objects

defcon Documentation, Release 0.7.0

dispatcher = anObject.dispatcher
dispatcher.removeObserver(observer=observer,

notification=notification, observable=anObject)

representationKeys()
Get a list of all representation keys that are currently cached.

setDataFromSerialization(data)
Restore state from the provided data-dict.

setdefault()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

undo()
Perform an undo if possible, or return. If undo is performed, this will post BaseObject.BeginUndo and
BaseObject.EndUndo notifications.

undoManager
The undo manager assigned to this object.

update([E], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()→ an object providing a view on D’s values

3.13 Unicode Data

See also:

Notifications: The UnicodeData object uses notifications to notify observers of changes.

3.13.1 Types of Values

This object works with three types of Unicode values: real, pseudo and forced. A real Unicode value is the value
assigned in the glyph object. A pseudo-Unicode value is an educated guess about what the Unicode value for the
glyph could be. This guess is made by splitting the suffix, if one exists, off of the glyph name and then looking up
the resulting base in the UnicodeData object. If something is found, the value is the pseudo-Unicode value. A forced-
Unicode value is a Private Use Area value that is temporaryily mapped to a glyph in the font. These values are stored
in the font object only as long as the font is active. They will not be saved into the font. Note: Forced-Unicode values
are very experimental. They should not be relied upon.

3.13.2 Tasks

Value From Glyph Name

• unicodeForGlyphName

• pseudoUnicodeForGlyphName

• forcedUnicodeForGlyphName

3.13. Unicode Data 77

defcon Documentation, Release 0.7.0

Glyph Name from Value

• glyphNameForForcedUnicode

• glyphNameForUnicode

Glyph Descriptions

• blockForGlyphName

• categoryForGlyphName

• scriptForGlyphName

Open and Closed Relatives

• closeRelativeForGlyphName

• openRelativeForGlyphName

Decomposition

• decompositionBaseForGlyphName

Sorting Glyphs

• sortGlyphNames()

Notifications

• dispatcher

• addObserver()

• removeObserver()

• hasObserver()

Parent

• getParent()

• setParent()

UnicodeData

class defcon.UnicodeData(layer=None)
This object serves Unicode data for the font.

This object posts the following notifications:

• UnicodeData.Changed

78 Chapter 3. Objects

defcon Documentation, Release 0.7.0

This object behaves like a dict. The keys are Unicode values and the values are lists of glyph names associated
with that unicode value:

{
65 : ["A"],
66 : ["B"],

}

To get the list of glyph names associated with a particular Unicode value, do this:

glyphList = unicodeData[65]

The object defines many more convenient ways of interacting with this data.

Warning: Setting data into this object manually is highly discouraged. The object automatically keeps
itself in sync with the font and the glyphs contained in the font. No manual intervention is required.

addGlyphData(glyphName, values)
Add the data for the glyph with glyphName and the Unicode values values.

This should never be called directly.

addObserver(observer, methodName, notification, identifier=None)
Add an observer to this object’s notification dispatcher.

• observer An object that can be referenced with weakref.

• methodName A string representing the method to be called when the notification is posted.

• notification The notification that the observer should be notified of.

• identifier None or a string identifying the observation. There is no requirement that the string be
unique. A reverse domain naming scheme is recommended, but there are no requirements for the
structure of the string.

The method that will be called as a result of the action must accept a single notification argument. This
will be a defcon.tools.notifications.Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.addObserver(observer=observer, methodName=methodName,

notification=notification, observable=anObject, identifier=identifier)

blockForGlyphName(glyphName, allowPseudoUnicode=True)
Get the block for glyphName. If allowPseudoUnicode is True, a pseudo-Unicode value will be used if
needed. This will return None if nothing can be found.

canRedo()
Returns a boolean indicating whether the undo manager is able to perform a redo.

canUndo()
Returns a boolean indicating whether the undo manager is able to perform an undo.

categoryForGlyphName(glyphName, allowPseudoUnicode=True)
Get the category for glyphName. If allowPseudoUnicode is True, a pseudo-Unicode value will be used
if needed. This will return None if nothing can be found.

clear()
Completely remove all stored data.

3.13. Unicode Data 79

defcon Documentation, Release 0.7.0

This should never be called directly.

closeRelativeForGlyphName(glyphName, allowPseudoUnicode=True)
Get the close relative for glyphName. For example, if you request the close relative of the glyph name for
the character (, you will be given the glyph name for the character) if it exists in the font. If allowPseu-
doUnicode is True, a pseudo-Unicode value will be used if needed. This will return None if nothing can
be found.

copy()→ a shallow copy of D

decompositionBaseForGlyphName(glyphName, allowPseudoUnicode=True)
Get the decomposition base for glyphName. If allowPseudoUnicode is True, a pseudo-Unicode value
will be used if needed. This will return glyphName if nothing can be found.

destroyAllRepresentations(notification=None)
Destroy all representations.

destroyRepresentation(name, **kwargs)
Destroy the stored representation for name and **kwargs. If no kwargs are given, any representation
with name will be destroyed regardless of the kwargs passed when the representation was created.

dirty
The dirty state of the object. True if the object has been changed. False if not. Setting this to True will
cause the base changed notification to be posted. The object will automatically maintain this attribute and
update it as you change the object.

disableNotifications(notification=None, observer=None)
Disable this object’s notifications until told to resume them.

• notification The specific notification to disable. This is optional. If no notification is given, all
notifications will be disabled.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.disableNotifications(

observable=anObject, notification=notification, observer=observer)

dispatcher
The defcon.tools.notifications.NotificationCenter assigned to the parent of this ob-
ject.

enableNotifications(notification=None, observer=None)
Enable this object’s notifications.

• notification The specific notification to enable. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.enableNotifications(

observable=anObject, notification=notification, observer=observer)

findObservations(observer=None, notification=None, observable=None, identifier=None)
Find observations of this object matching the given arguments based on the values that were passed during
addObserver. A value of None for any of these indicates that all should be considered to match the value.
In the case of identifier, strings will be matched using fnmatch.fnmatchcase. The returned value will be a
list of dictionaries with this format:

[

{ observer=<. . . > observable=<. . . > methodName=”. . . ” notification=”. . . ” identifier=”. . . ”

80 Chapter 3. Objects

defcon Documentation, Release 0.7.0

}

]

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.findObservations(

observer=observer, observable=anObject,
notification=notification, identifier=identifier

)

font
The Font that this object belongs to.

forcedUnicodeForGlyphName(glyphName)
Get the forced-Unicode value for glyphName.

fromkeys()
Create a new dictionary with keys from iterable and values set to value.

get()
Return the value for key if key is in the dictionary, else default.

getDataForSerialization(**kwargs)
Return a dict of data that can be pickled.

getRepresentation(name, **kwargs)
Get a representation. name must be a registered representation name. **kwargs will be passed to the
appropriate representation factory.

glyphNameForForcedUnicode(value)
Get the glyph name assigned to the forced-Unicode specified by value.

glyphNameForUnicode(value)
Get the first glyph assigned to the Unicode specified as value. This will return None if no glyph is found.

hasCachedRepresentation(name, **kwargs)
Returns a boolean indicating if a representation for name and **kwargs is cached in the object.

hasObserver(observer, notification)
Returns a boolean indicating is the observer is registered for notification.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.hasObserver(observer=observer,

notification=notification, observable=anObject)

holdNotifications(notification=None, note=None)
Hold this object’s notifications until told to release them.

• notification The specific notification to hold. This is optional. If no notification is given, all notifica-
tions will be held.

• note An arbitrary string containing information about why the hold has been requested, the requester,
etc. This is used for reference only.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.holdNotifications(

observable=anObject, notification=notification, note=note)

3.13. Unicode Data 81

defcon Documentation, Release 0.7.0

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

layer
The Layer that this object belongs to.

layerSet
The LayerSet that this object belongs to.

openRelativeForGlyphName(glyphName, allowPseudoUnicode=True)
Get the open relative for glyphName. For example, if you request the open relative of the glyph name for
the character), you will be given the glyph name for the character (if it exists in the font. If allowPseu-
doUnicode is True, a pseudo-Unicode value will be used if needed. This will return None if nothing can
be found.

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

popitem()→ (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

postNotification(notification, data=None)
Post a notification through this object’s notification dispatcher.

• notification The name of the notification.

• data Arbitrary data that will be stored in the Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.postNotification(

notification=notification, observable=anObject, data=data)

pseudoUnicodeForGlyphName(glyphName)
Get the pseudo-Unicode value for glyphName. This will return None if nothing is found.

redo()
Perform a redo if possible, or return. If redo is performed, this will post BaseObject.BeginRedo and
BaseObject.EndRedo notifications.

releaseHeldNotifications(notification=None)
Release this object’s held notifications.

• notification The specific notification to hold. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.releaseHeldNotifications(

observable=anObject, notification=notification)

removeGlyphData(glyphName, values)
Remove the data for the glyph with glyphName and the Unicode values values.

This should never be called directly.

removeObserver(observer, notification)
Remove an observer from this object’s notification dispatcher.

• observer A registered object.

• notification The notification that the observer was registered to be notified of.

82 Chapter 3. Objects

defcon Documentation, Release 0.7.0

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.removeObserver(observer=observer,

notification=notification, observable=anObject)

representationKeys()
Get a list of all representation keys that are currently cached.

scriptForGlyphName(glyphName, allowPseudoUnicode=True)
Get the script for glyphName. If allowPseudoUnicode is True, a pseudo-Unicode value will be used if
needed. This will return None if nothing can be found.

setDataFromSerialization(data)
Restore state from the provided data-dict.

setdefault()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

sortGlyphNames(glyphNames, sortDescriptors=[{’type’: ’unicode’}])
This sorts the list of glyphNames following the sort descriptors provided in the sortDescriptors list. This
works by iterating over the sort descriptors and subdividing. For example, if the first sort descriptor is a
suffix type, internally, the result of the sort will look something like this:

[
[glyphsWithNoSuffix],
[glyphsWith.suffix1],
[glyphsWith.suffix2]

]

When the second sort descriptor is processed, the results of previous sorts are subdivided even further. For
example, if the second sort type is script:

[[
[glyphsWithNoSuffix, script1], [glyphsWithNoSuffix, script2],
[glyphsWith.suffix1, script1], [glyphsWith.suffix1, script2],
[glyphsWith.suffix2, script1], [glyphsWith.suffix2, script2]

]]

And so on. The returned list will be flattened into a list of glyph names.

Each item in sortDescriptors should be a dict of the following form:

Key Description
type The type of sort to perform. See below for options.
ascending Boolean representing if the glyphs should be in ascending or descending order. Op-

tional. The default is True.
allowPseu-
doUnicode

Boolean representing if pseudo-Unicode values are used. If not, real Unicode values
will be used if necessary. Optional. The default is False.

function A function. Used only for custom sort types. See details below.

Available Sort Types:

There are four types of sort types: simple, complex, canned and custom. Simple sorts are based on sorting
non-magical values, such as Unicode values. Complex sorts are heuristic based sorts based on common
glyph name practices, aesthetic preferences and other hard to quantify ideas. Custom sorts are just that,

3.13. Unicode Data 83

defcon Documentation, Release 0.7.0

custom sorts. Canned sorts are combinations of simple, complex and custom sorts that give optimized
ordering results. Complex and canned sorts may change with further updates, so they should not be relied
on for persistent ordering.

Simple Sort Types Description
alphabetical Self-explanatory.
unicode Sort based on Unicode value.
script Sort based on Unicode script.
category Sort based on Unicode category.
block Sort based on Unicode block.
suffix Sort based on glyph name suffix.
decompositionBase Sort based on the base glyph defined in the decomposition rules.

Com-
plex
Sort
Types

Description

weight-
ed-
Suf-
fix

Sort based on glyph names suffix. The ordering of the suffixes is based on the calculated
“weight” of the suffix. This value is calculated by noting what type of glyphs have the same
suffix. The more glyph types, the more important the suffix. Additionally, glyphs with suf-
fixes that have only numerical differences are grouped together. For example, a.alt, a.alt1 and
a.alt319 will be grouped together.

liga-
ture

Sort into to groups: non-ligatures and ligatures. The determination of whether a glyph is a
ligature or not is based on the Unicode value, common glyph names or the use of an underscore
in the name.

Canned Sort Types Description
cannedDesign Sort glyphs into a design process friendly order.

Custom Sort Type Description
custom Sort using a custom function. See details below.

Sorting with a custom function: If the builtin sort types don’t do exactly what you need, you can use a
custom sort type that contains an arbitrary function that handles sorting externally. This follows the same
sorting logic as detailed above. The custom sort type can be used in conjunction with the builtin sort types.

The function should follow this form:

mySortFunction(font, glyphNames, ascending=True, allowPseudoUnicode=False)

The ascending and allowPseudoUnicode arguments will be the values defined in the sort descriptors.

The function should return a list of lists of glyph names.

An example:

def sortByE(font, glyphNames, ascending=True, allowsPseudoUnicodes=False):
startsWithE = []
doesNotStartWithE = []
for glyphName in glyphNames:

if glyphName.startswith("startsWithE"):
startsWithE.append(glyphName)

(continues on next page)

84 Chapter 3. Objects

defcon Documentation, Release 0.7.0

(continued from previous page)

else:
doesNotStartWithE.append(glyphName)

return [startsWithE, doesNotStartWithE]

undo()
Perform an undo if possible, or return. If undo is performed, this will post BaseObject.BeginUndo and
BaseObject.EndUndo notifications.

undoManager
The undo manager assigned to this object.

unicodeForGlyphName(glyphName)
Get the Unicode value for glyphName. Returns None if no value is found.

update(other)
Update the data int this object with the data from other.

This should never be called directly.

values()→ an object providing a view on D’s values

3.14 NotificationCenter

Direct creation of and interation with these objects will most likely be rare as they are automatically handled by
BaseObject.

3.14.1 NotificationCenter

class defcon.tools.notifications.NotificationCenter

addObserver(observer, methodName, notification=None, observable=None, identifier=None)
Add an observer to this notification dispatcher.

• observer An object that can be referenced with weakref.

• methodName A string representing the method to be called when the notification is posted.

• notification The notification that the observer should be notified of. If this is None, all notifications
for the observable will be posted to observer.

• observable The object to observe. If this is None, all notifications with the name provided as notifi-
cation will be posted to the observer.

• identifier None or a string identifying the observation. There is no requirement that the string be
unique. A reverse domain naming scheme is recommended, but there are no requirements for the
structure of the string.

If None is given for both notification and observable all notifications posted will be sent to the given
method of the observer.

The method that will be called as a result of the action must accept a single notification argument. This
will be a Notification object.

areNotificationsDisabled(observable=None, notification=None, observer=None)
Returns a boolean indicating if notifications posted to all objects observing notification in observable are
disabled.

3.14. NotificationCenter 85

defcon Documentation, Release 0.7.0

• observable The object that the notification belongs to. This is optional.

• notification The name of the notification. This is optional.

• observer The observer. This is optional.

areNotificationsHeld(observable=None, notification=None, observer=None)
Returns a boolean indicating if notifications posted to all objects observing notification in observable are
being held.

• observable The object that the notification belongs to. This is optional.

• notification The name of the notification. This is optional.

• observer The observer. This is optional.

disableNotifications(observable=None, notification=None, observer=None)
Disable all posts of notification from observable posted to observer observing.

• observable The object that the notification belongs to. This is optional. If no observable is given, all
notifications will be disabled for observer.

• notification The name of the notification. This is optional. If no notification is given, all notifications
for observable will be disabled for observer.

• observer The specific observer to not send posts to. If no observer is given, the appropriate notifica-
tions will not be posted to any observers.

This object will retain a count of how many times it has been told to disable notifications for notification
and observable. It will not enable new notifications until the notification and observable have been released
the same number of times.

enableNotifications(observable=None, notification=None, observer=None)
Enable notifications posted to all objects observing notification in observable.

• observable The object that the notification belongs to. This is optional.

• notification The name of the notification. This is optional.

• observer The observer. This is optional.

findObservations(observer=None, notification=None, observable=None, identifier=None)
Find observations matching the given arguments based on the values that were passed during addObserver.
A value of None for any of these indicates that all should be considered to match the value. In the case
of identifier, strings will be matched using fnmatch.fnmatchcase. The returned value will be a list of
dictionaries with this format:

[

{ observer=<. . . > observable=<. . . > methodName=”. . . ” notification=”. . . ” identifier=”. . . ”

}

]

getHeldNotificationNotes(observable=None, notification=None, observer=None)
Returns a list of notes defined for notification holds observing notification in observable are being held.

• observable The object that the notification belongs to. This is optional.

• notification The name of the notification. This is optional.

• observer The observer. This is optional.

86 Chapter 3. Objects

defcon Documentation, Release 0.7.0

getHeldNotifications()
Returns a list of all held notifications. This will be a tuple of the form:

(notification, observable, observer)

hasObserver(observer, notification, observable)
Returns a boolean indicating if the observer is registered for notification posted by observable. Either
observable or notification may be None.

holdNotifications(observable=None, notification=None, observer=None, note=None)
Hold all notifications posted to all objects observing notification in observable.

• observable The object that the notification belongs to. This is optional. If no observable is given, all
notifications will be held.

• notification The name of the notification. This is optional. If no notification is given, all notifications
for observable will be held.

• observer The specific observer to not hold notifications for. If no observer is given, the appropriate
notifications will be held for all observers.

• note An arbitrary string containing information about why the hold has been requested, the requester,
etc. This is used for reference only.

Held notifications will be posted after the matching notification and observable have been passed to
Notification.releaseHeldNotifications(). This object will retain a count of how many
times it has been told to hold notifications for notification and observable. It will not post the notifications
until the notification and observable have been released the same number of times.

releaseHeldNotifications(observable=None, notification=None, observer=None)
Release all held notifications posted to all objects observing notification in observable.

• observable The object that the notification belongs to. This is optional.

• notification The name of the notification. This is optional.

• observer The observer. This is optional.

removeObserver(observer, notification, observable=None)
Remove an observer from this notification dispatcher.

• observer A registered object.

• notification The notification that the observer was registered to be notified of. If this is “all”, all
notifications for the observable will be removed for observer.

• observable The object being observed.

3.14.2 Notification

class defcon.tools.notifications.Notification(name, objRef, data)
An object that wraps notification data.

data
Arbitrary data passed along with the notification. There is no set format for this data and there is not
requirement that any data be present. Refer to the documentation for methods that are responsible for
generating notifications for information about this data.

name
The notification name. A string.

object
The observable object the notification belongs to.

3.14. NotificationCenter 87

defcon Documentation, Release 0.7.0

3.15 BaseObject

The main objects in defcon all subclass these objects.

See also:

NotificationCenter The base object uses notifications to notify observers about changes. The API for sub-
scribing/unsubscribing to notifications are detailed below. Some familiarity with the NotificationCenter
might be helpful.

3.15.1 BaseObject

class defcon.objects.base.BaseObject
The base object in defcon from which all other objects should be derived.

This object posts the following notifications:

• BaseObject.Changed

• BaseObject.BeginUndo

• BaseObject.EndUndo

• BaseObject.BeginRedo

• BaseObject.EndRedo

Keep in mind that subclasses will not post these same notifications.

Subclasses must override the following attributes:

Name Notes
changeNotifica-
tionName

This must be a string unique to the class indicating the name of the notification to be
posted when the dirty attribute is set.

representation-
Factories

This must be a dictionary that is shared across all instances of the class.

addObserver(observer, methodName, notification, identifier=None)
Add an observer to this object’s notification dispatcher.

• observer An object that can be referenced with weakref.

• methodName A string representing the method to be called when the notification is posted.

• notification The notification that the observer should be notified of.

• identifier None or a string identifying the observation. There is no requirement that the string be
unique. A reverse domain naming scheme is recommended, but there are no requirements for the
structure of the string.

The method that will be called as a result of the action must accept a single notification argument. This
will be a defcon.tools.notifications.Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.addObserver(observer=observer, methodName=methodName,

notification=notification, observable=anObject, identifier=identifier)

88 Chapter 3. Objects

defcon Documentation, Release 0.7.0

canRedo()
Returns a boolean indicating whether the undo manager is able to perform a redo.

canUndo()
Returns a boolean indicating whether the undo manager is able to perform an undo.

destroyAllRepresentations(notification=None)
Destroy all representations.

destroyRepresentation(name, **kwargs)
Destroy the stored representation for name and **kwargs. If no kwargs are given, any representation
with name will be destroyed regardless of the kwargs passed when the representation was created.

dirty
The dirty state of the object. True if the object has been changed. False if not. Setting this to True will
cause the base changed notification to be posted. The object will automatically maintain this attribute and
update it as you change the object.

disableNotifications(notification=None, observer=None)
Disable this object’s notifications until told to resume them.

• notification The specific notification to disable. This is optional. If no notification is given, all
notifications will be disabled.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.disableNotifications(

observable=anObject, notification=notification, observer=observer)

dispatcher
The defcon.tools.notifications.NotificationCenter assigned to the parent of this ob-
ject.

enableNotifications(notification=None, observer=None)
Enable this object’s notifications.

• notification The specific notification to enable. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.enableNotifications(

observable=anObject, notification=notification, observer=observer)

findObservations(observer=None, notification=None, observable=None, identifier=None)
Find observations of this object matching the given arguments based on the values that were passed during
addObserver. A value of None for any of these indicates that all should be considered to match the value.
In the case of identifier, strings will be matched using fnmatch.fnmatchcase. The returned value will be a
list of dictionaries with this format:

[

{ observer=<. . . > observable=<. . . > methodName=”. . . ” notification=”. . . ” identifier=”. . . ”

}

]

This is a convenience method that does the same thing as:

3.15. BaseObject 89

defcon Documentation, Release 0.7.0

dispatcher = anObject.dispatcher
dispatcher.findObservations(

observer=observer, observable=anObject,
notification=notification, identifier=identifier

)

getDataForSerialization(**kwargs)
Return a dict of data that can be pickled.

getRepresentation(name, **kwargs)
Get a representation. name must be a registered representation name. **kwargs will be passed to the
appropriate representation factory.

hasCachedRepresentation(name, **kwargs)
Returns a boolean indicating if a representation for name and **kwargs is cached in the object.

hasObserver(observer, notification)
Returns a boolean indicating is the observer is registered for notification.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.hasObserver(observer=observer,

notification=notification, observable=anObject)

holdNotifications(notification=None, note=None)
Hold this object’s notifications until told to release them.

• notification The specific notification to hold. This is optional. If no notification is given, all notifica-
tions will be held.

• note An arbitrary string containing information about why the hold has been requested, the requester,
etc. This is used for reference only.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.holdNotifications(

observable=anObject, notification=notification, note=note)

postNotification(notification, data=None)
Post a notification through this object’s notification dispatcher.

• notification The name of the notification.

• data Arbitrary data that will be stored in the Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.postNotification(

notification=notification, observable=anObject, data=data)

redo()
Perform a redo if possible, or return. If redo is performed, this will post BaseObject.BeginRedo and
BaseObject.EndRedo notifications.

releaseHeldNotifications(notification=None)
Release this object’s held notifications.

• notification The specific notification to hold. This is optional.

90 Chapter 3. Objects

defcon Documentation, Release 0.7.0

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.releaseHeldNotifications(

observable=anObject, notification=notification)

removeObserver(observer, notification)
Remove an observer from this object’s notification dispatcher.

• observer A registered object.

• notification The notification that the observer was registered to be notified of.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.removeObserver(observer=observer,

notification=notification, observable=anObject)

representationKeys()
Get a list of all representation keys that are currently cached.

setDataFromSerialization(data)
Restore state from the provided data-dict.

undo()
Perform an undo if possible, or return. If undo is performed, this will post BaseObject.BeginUndo and
BaseObject.EndUndo notifications.

undoManager
The undo manager assigned to this object.

3.15.2 BaseDictObject

class defcon.objects.base.BaseDictObject
A subclass of BaseObject that implements a dict API. Any changes to the contents of the object will cause the
dirty attribute to be set to True.

3.16 LayerSet

3.16.1 LayerSet

class defcon.LayerSet(font=None, layerClass=None, libClass=None, unicodeDataClass=None,
guidelineClass=None, glyphClass=None, glyphContourClass=None, glyph-
PointClass=None, glyphComponentClass=None, glyphAnchorClass=None,
glyphImageClass=None)

This object manages all layers in the font.

This object posts the following notifications:

• LayerSet.Changed

• LayerSet.LayersChanged

• LayerSet.LayerChanged

• LayerSet.DefaultLayerWillChange

3.16. LayerSet 91

defcon Documentation, Release 0.7.0

• LayerSet.DefaultLayerChanged

• LayerSet.LayerOrderChanged

• LayerSet.LayerAdded

• LayerSet.LayerDeleted

• LayerSet.LayerWillBeDeleted

• LayerSet.LayerNameChanged

This object behaves like a dict. For example, to get a particular layer:

layer = layerSet["layer name"]

If the layer name is None, the default layer will be retrieved.

Note: It’s up to the caller to ensure that a default layer is present as required by the UFO specification.

addObserver(observer, methodName, notification, identifier=None)
Add an observer to this object’s notification dispatcher.

• observer An object that can be referenced with weakref.

• methodName A string representing the method to be called when the notification is posted.

• notification The notification that the observer should be notified of.

• identifier None or a string identifying the observation. There is no requirement that the string be
unique. A reverse domain naming scheme is recommended, but there are no requirements for the
structure of the string.

The method that will be called as a result of the action must accept a single notification argument. This
will be a defcon.tools.notifications.Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.addObserver(observer=observer, methodName=methodName,

notification=notification, observable=anObject, identifier=identifier)

canRedo()
Returns a boolean indicating whether the undo manager is able to perform a redo.

canUndo()
Returns a boolean indicating whether the undo manager is able to perform an undo.

defaultLayer
The default Layer object. Setting this will post LayerSet.DefaultLayerChanged and LayerSet.Changed
notifications.

destroyAllRepresentations(notification=None)
Destroy all representations.

destroyRepresentation(name, **kwargs)
Destroy the stored representation for name and **kwargs. If no kwargs are given, any representation
with name will be destroyed regardless of the kwargs passed when the representation was created.

dirty
The dirty state of the object. True if the object has been changed. False if not. Setting this to True will
cause the base changed notification to be posted. The object will automatically maintain this attribute and
update it as you change the object.

92 Chapter 3. Objects

defcon Documentation, Release 0.7.0

disableNotifications(notification=None, observer=None)
Disable this object’s notifications until told to resume them.

• notification The specific notification to disable. This is optional. If no notification is given, all
notifications will be disabled.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.disableNotifications(

observable=anObject, notification=notification, observer=observer)

dispatcher
The defcon.tools.notifications.NotificationCenter assigned to the parent of this ob-
ject.

enableNotifications(notification=None, observer=None)
Enable this object’s notifications.

• notification The specific notification to enable. This is optional.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.enableNotifications(

observable=anObject, notification=notification, observer=observer)

findObservations(observer=None, notification=None, observable=None, identifier=None)
Find observations of this object matching the given arguments based on the values that were passed during
addObserver. A value of None for any of these indicates that all should be considered to match the value.
In the case of identifier, strings will be matched using fnmatch.fnmatchcase. The returned value will be a
list of dictionaries with this format:

[

{ observer=<. . . > observable=<. . . > methodName=”. . . ” notification=”. . . ” identifier=”. . . ”

}

]

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.findObservations(

observer=observer, observable=anObject,
notification=notification, identifier=identifier

)

font
The Font that this layer set belongs to.

getDataForSerialization(**kwargs)
Return a dict of data that can be pickled.

getRepresentation(name, **kwargs)
Get a representation. name must be a registered representation name. **kwargs will be passed to the
appropriate representation factory.

getSaveProgressBarTickCount(formatVersion)
Get the number of ticks that will be used by a progress bar in the save method. This method should not be
called externally. Subclasses may override this method to implement custom saving behavior.

3.16. LayerSet 93

defcon Documentation, Release 0.7.0

hasCachedRepresentation(name, **kwargs)
Returns a boolean indicating if a representation for name and **kwargs is cached in the object.

hasObserver(observer, notification)
Returns a boolean indicating is the observer is registered for notification.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.hasObserver(observer=observer,

notification=notification, observable=anObject)

holdNotifications(notification=None, note=None)
Hold this object’s notifications until told to release them.

• notification The specific notification to hold. This is optional. If no notification is given, all notifica-
tions will be held.

• note An arbitrary string containing information about why the hold has been requested, the requester,
etc. This is used for reference only.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.holdNotifications(

observable=anObject, notification=notification, note=note)

layerOrder
The layer order from top to bottom. Setting this will post LayerSet.LayerOrderChanged and Layer-
Set.Changed notifications.

newLayer(name, glyphSet=None)
Create a new Layer and add it to the top of the layer order. glyphSet should only be passed when reading
from a UFO.

This posts LayerSet.LayerAdded and LayerSet.Changed notifications.

postNotification(notification, data=None)
Post a notification through this object’s notification dispatcher.

• notification The name of the notification.

• data Arbitrary data that will be stored in the Notification object.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.postNotification(

notification=notification, observable=anObject, data=data)

redo()
Perform a redo if possible, or return. If redo is performed, this will post BaseObject.BeginRedo and
BaseObject.EndRedo notifications.

releaseHeldNotifications(notification=None)
Release this object’s held notifications.

• notification The specific notification to hold. This is optional.

This is a convenience method that does the same thing as:

94 Chapter 3. Objects

defcon Documentation, Release 0.7.0

dispatcher = anObject.dispatcher
dispatcher.releaseHeldNotifications(

observable=anObject, notification=notification)

reloadLayers(layerData)
Reload the layers. This should not be called externally.

removeObserver(observer, notification)
Remove an observer from this object’s notification dispatcher.

• observer A registered object.

• notification The notification that the observer was registered to be notified of.

This is a convenience method that does the same thing as:

dispatcher = anObject.dispatcher
dispatcher.removeObserver(observer=observer,

notification=notification, observable=anObject)

representationKeys()
Get a list of all representation keys that are currently cached.

save(writer, saveAs=False, progressBar=None)
Save all layers. This method should not be called externally. Subclasses may override this method to
implement custom saving behavior.

setDataFromSerialization(data)
Restore state from the provided data-dict.

testForExternalChanges(reader)
Test for external changes. This should not be called externally.

undo()
Perform an undo if possible, or return. If undo is performed, this will post BaseObject.BeginUndo and
BaseObject.EndUndo notifications.

undoManager
The undo manager assigned to this object.

3.16. LayerSet 95

defcon Documentation, Release 0.7.0

96 Chapter 3. Objects

CHAPTER 4

Dependencies

• FontTools >= 3.31.0, installed with the fonttools[ufo] extra, required to import fonttools.ufoLib module.

97

https://github.com/behdad/fonttools

defcon Documentation, Release 0.7.0

98 Chapter 4. Dependencies

CHAPTER 5

Optional Dependencies

• fontPens

• lxml

99

https://github.com/robofab-developers/fontPens
https://github.com/lxml/lxml/

defcon Documentation, Release 0.7.0

100 Chapter 5. Optional Dependencies

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

101

defcon Documentation, Release 0.7.0

102 Chapter 6. Indices and tables

Python Module Index

d
defcon, 78
defcon.objects.base, 88
defcon.tools.notifications, 85

103

defcon Documentation, Release 0.7.0

104 Python Module Index

Index

A
addGlyphData() (defcon.UnicodeData method), 79
addObserver() (defcon.Anchor method), 48
addObserver() (defcon.Component method), 42
addObserver() (defcon.Contour method), 36
addObserver() (defcon.Features method), 69
addObserver() (defcon.Font method), 11
addObserver() (defcon.Glyph method), 27
addObserver() (defcon.Groups method), 65
addObserver() (defcon.Info method), 56
addObserver() (defcon.Kerning method), 60
addObserver() (defcon.Layer method), 19
addObserver() (defcon.LayerSet method), 92
addObserver() (defcon.Lib method), 73
addObserver() (defcon.objects.base.BaseObject

method), 88
addObserver() (def-

con.tools.notifications.NotificationCenter
method), 85

addObserver() (defcon.UnicodeData method), 79
addPoint() (defcon.Contour method), 37
Anchor (class in defcon), 48
anchorClass (defcon.Glyph attribute), 28
anchorIndex() (defcon.Glyph method), 28
anchors (defcon.Glyph attribute), 28
appendAnchor() (defcon.Glyph method), 28
appendComponent() (defcon.Glyph method), 28
appendContour() (defcon.Glyph method), 28
appendGuideline() (defcon.Font method), 12
appendGuideline() (defcon.Glyph method), 28
appendPoint() (defcon.Contour method), 37
area (defcon.Contour attribute), 37
area (defcon.Glyph attribute), 28
areNotificationsDisabled() (def-

con.tools.notifications.NotificationCenter
method), 85

areNotificationsHeld() (def-
con.tools.notifications.NotificationCenter
method), 86

B
BaseDictObject (class in defcon.objects.base), 91
baseGlyph (defcon.Component attribute), 43
BaseObject (class in defcon.objects.base), 88
beginPath() (defcon.Contour method), 37
blockForGlyphName() (defcon.UnicodeData

method), 79
bottomMargin (defcon.Glyph attribute), 28
bounds (defcon.Component attribute), 43
bounds (defcon.Contour attribute), 37
bounds (defcon.Font attribute), 12
bounds (defcon.Glyph attribute), 28
bounds (defcon.Layer attribute), 20

C
canRedo() (defcon.Anchor method), 49
canRedo() (defcon.Component method), 43
canRedo() (defcon.Contour method), 37
canRedo() (defcon.Features method), 70
canRedo() (defcon.Font method), 12
canRedo() (defcon.Glyph method), 28
canRedo() (defcon.Groups method), 65
canRedo() (defcon.Info method), 56
canRedo() (defcon.Kerning method), 60
canRedo() (defcon.Layer method), 20
canRedo() (defcon.LayerSet method), 92
canRedo() (defcon.Lib method), 74
canRedo() (defcon.objects.base.BaseObject method),

88
canRedo() (defcon.UnicodeData method), 79
canUndo() (defcon.Anchor method), 49
canUndo() (defcon.Component method), 43
canUndo() (defcon.Contour method), 37
canUndo() (defcon.Features method), 70
canUndo() (defcon.Font method), 12
canUndo() (defcon.Glyph method), 28
canUndo() (defcon.Groups method), 66
canUndo() (defcon.Info method), 56
canUndo() (defcon.Kerning method), 60

105

defcon Documentation, Release 0.7.0

canUndo() (defcon.Layer method), 20
canUndo() (defcon.LayerSet method), 92
canUndo() (defcon.Lib method), 74
canUndo() (defcon.objects.base.BaseObject method),

89
canUndo() (defcon.UnicodeData method), 79
categoryForGlyphName() (defcon.UnicodeData

method), 79
clear() (defcon.Anchor method), 49
clear() (defcon.Contour method), 37
clear() (defcon.Glyph method), 28
clear() (defcon.Groups method), 66
clear() (defcon.Kerning method), 61
clear() (defcon.Lib method), 74
clear() (defcon.UnicodeData method), 79
clearAnchors() (defcon.Glyph method), 28
clearComponents() (defcon.Glyph method), 29
clearContours() (defcon.Glyph method), 29
clearGuidelines() (defcon.Font method), 12
clearGuidelines() (defcon.Glyph method), 29
clockwise (defcon.Contour attribute), 37
closeRelativeForGlyphName() (def-

con.UnicodeData method), 80
color (defcon.Anchor attribute), 49
color (defcon.Layer attribute), 20
Component (class in defcon), 42
componentClass (defcon.Glyph attribute), 29
componentIndex() (defcon.Glyph method), 29
componentReferences (defcon.Font attribute), 12
componentReferences (defcon.Layer attribute), 20
components (defcon.Glyph attribute), 29
Contour (class in defcon), 36
contourClass (defcon.Glyph attribute), 29
contourIndex() (defcon.Glyph method), 29
contourInside() (defcon.Contour method), 37
controlPointBounds (defcon.Component at-

tribute), 43
controlPointBounds (defcon.Contour attribute), 37
controlPointBounds (defcon.Font attribute), 12
controlPointBounds (defcon.Glyph attribute), 29
controlPointBounds (defcon.Layer attribute), 20
copy() (defcon.Anchor method), 49
copy() (defcon.Groups method), 66
copy() (defcon.Kerning method), 61
copy() (defcon.Lib method), 74
copy() (defcon.UnicodeData method), 80
copyDataFromGlyph() (defcon.Glyph method), 29
correctContourDirection() (defcon.Glyph

method), 29

D
data (defcon.Font attribute), 12
data (defcon.tools.notifications.Notification attribute),

87

decomposeAllComponents() (defcon.Glyph
method), 29

decomposeComponent() (defcon.Glyph method), 29
decompositionBaseForGlyphName() (def-

con.UnicodeData method), 80
defaultLayer (defcon.LayerSet attribute), 92
defcon (module), 11, 19, 26, 36, 42, 47, 48, 56, 59, 64,

69, 73, 78, 91
defcon.objects.base (module), 88
defcon.tools.notifications (module), 85
destroyAllRepresentations() (defcon.Anchor

method), 49
destroyAllRepresentations() (def-

con.Component method), 43
destroyAllRepresentations() (defcon.Contour

method), 37
destroyAllRepresentations() (def-

con.Features method), 70
destroyAllRepresentations() (defcon.Font

method), 12
destroyAllRepresentations() (defcon.Glyph

method), 29
destroyAllRepresentations() (defcon.Groups

method), 66
destroyAllRepresentations() (defcon.Info

method), 56
destroyAllRepresentations() (defcon.Kerning

method), 61
destroyAllRepresentations() (defcon.Layer

method), 20
destroyAllRepresentations() (def-

con.LayerSet method), 92
destroyAllRepresentations() (defcon.Lib

method), 74
destroyAllRepresentations() (def-

con.objects.base.BaseObject method), 89
destroyAllRepresentations() (def-

con.UnicodeData method), 80
destroyRepresentation() (defcon.Anchor

method), 49
destroyRepresentation() (defcon.Component

method), 43
destroyRepresentation() (defcon.Contour

method), 37
destroyRepresentation() (defcon.Features

method), 70
destroyRepresentation() (defcon.Font method),

12
destroyRepresentation() (defcon.Glyph

method), 29
destroyRepresentation() (defcon.Groups

method), 66
destroyRepresentation() (defcon.Info method),

56

106 Index

defcon Documentation, Release 0.7.0

destroyRepresentation() (defcon.Kerning
method), 61

destroyRepresentation() (defcon.Layer
method), 20

destroyRepresentation() (defcon.LayerSet
method), 92

destroyRepresentation() (defcon.Lib method),
74

destroyRepresentation() (def-
con.objects.base.BaseObject method), 89

destroyRepresentation() (defcon.UnicodeData
method), 80

dirty (defcon.Anchor attribute), 49
dirty (defcon.Component attribute), 43
dirty (defcon.Contour attribute), 37
dirty (defcon.Features attribute), 70
dirty (defcon.Font attribute), 12
dirty (defcon.Glyph attribute), 30
dirty (defcon.Groups attribute), 66
dirty (defcon.Info attribute), 56
dirty (defcon.Kerning attribute), 61
dirty (defcon.Layer attribute), 20
dirty (defcon.LayerSet attribute), 92
dirty (defcon.Lib attribute), 74
dirty (defcon.objects.base.BaseObject attribute), 89
dirty (defcon.UnicodeData attribute), 80
disableNotifications() (defcon.Anchor

method), 49
disableNotifications() (defcon.Component

method), 43
disableNotifications() (defcon.Contour

method), 38
disableNotifications() (defcon.Features

method), 70
disableNotifications() (defcon.Font method),

12
disableNotifications() (defcon.Glyph method),

30
disableNotifications() (defcon.Groups

method), 66
disableNotifications() (defcon.Info method),

57
disableNotifications() (defcon.Kerning

method), 61
disableNotifications() (defcon.Layer method),

20
disableNotifications() (defcon.LayerSet

method), 92
disableNotifications() (defcon.Lib method), 74
disableNotifications() (def-

con.objects.base.BaseObject method), 89
disableNotifications() (def-

con.tools.notifications.NotificationCenter
method), 86

disableNotifications() (defcon.UnicodeData
method), 80

dispatcher (defcon.Anchor attribute), 49
dispatcher (defcon.Component attribute), 43
dispatcher (defcon.Contour attribute), 38
dispatcher (defcon.Features attribute), 70
dispatcher (defcon.Font attribute), 13
dispatcher (defcon.Glyph attribute), 30
dispatcher (defcon.Groups attribute), 66
dispatcher (defcon.Info attribute), 57
dispatcher (defcon.Kerning attribute), 61
dispatcher (defcon.Layer attribute), 20
dispatcher (defcon.LayerSet attribute), 93
dispatcher (defcon.Lib attribute), 74
dispatcher (defcon.objects.base.BaseObject at-

tribute), 89
dispatcher (defcon.UnicodeData attribute), 80
draw() (defcon.Component method), 44
draw() (defcon.Contour method), 38
draw() (defcon.Glyph method), 30
drawPoints() (defcon.Component method), 44
drawPoints() (defcon.Contour method), 38
drawPoints() (defcon.Glyph method), 30

E
enableNotifications() (defcon.Anchor method),

49
enableNotifications() (defcon.Component

method), 44
enableNotifications() (defcon.Contour

method), 38
enableNotifications() (defcon.Features

method), 70
enableNotifications() (defcon.Font method), 13
enableNotifications() (defcon.Glyph method),

30
enableNotifications() (defcon.Groups method),

66
enableNotifications() (defcon.Info method), 57
enableNotifications() (defcon.Kerning

method), 61
enableNotifications() (defcon.Layer method),

21
enableNotifications() (defcon.LayerSet

method), 93
enableNotifications() (defcon.Lib method), 74
enableNotifications() (def-

con.objects.base.BaseObject method), 89
enableNotifications() (def-

con.tools.notifications.NotificationCenter
method), 86

enableNotifications() (defcon.UnicodeData
method), 80

endPath() (defcon.Contour method), 38

Index 107

defcon Documentation, Release 0.7.0

F
Features (class in defcon), 69
features (defcon.Font attribute), 13
find() (defcon.Kerning method), 61
findObservations() (defcon.Anchor method), 49
findObservations() (defcon.Component method),

44
findObservations() (defcon.Contour method), 38
findObservations() (defcon.Features method), 70
findObservations() (defcon.Font method), 13
findObservations() (defcon.Glyph method), 30
findObservations() (defcon.Groups method), 66
findObservations() (defcon.Info method), 57
findObservations() (defcon.Kerning method), 61
findObservations() (defcon.Layer method), 21
findObservations() (defcon.LayerSet method), 93
findObservations() (defcon.Lib method), 75
findObservations() (def-

con.objects.base.BaseObject method), 89
findObservations() (def-

con.tools.notifications.NotificationCenter
method), 86

findObservations() (defcon.UnicodeData
method), 80

Font (class in defcon), 11
font (defcon.Anchor attribute), 50
font (defcon.Component attribute), 44
font (defcon.Contour attribute), 38
font (defcon.Features attribute), 71
font (defcon.Glyph attribute), 31
font (defcon.Groups attribute), 67
font (defcon.Info attribute), 57
font (defcon.Kerning attribute), 62
font (defcon.Layer attribute), 21
font (defcon.LayerSet attribute), 93
font (defcon.Lib attribute), 75
font (defcon.UnicodeData attribute), 81
forcedUnicodeForGlyphName() (def-

con.UnicodeData method), 81
fromkeys() (defcon.Anchor method), 50
fromkeys() (defcon.Groups method), 67
fromkeys() (defcon.Kerning method), 62
fromkeys() (defcon.Lib method), 75
fromkeys() (defcon.UnicodeData method), 81

G
generateIdentifier() (defcon.Anchor method),

50
generateIdentifier() (defcon.Component

method), 44
generateIdentifier() (defcon.Contour method),

39
generateIdentifierForPoint() (def-

con.Contour method), 39

get() (defcon.Anchor method), 50
get() (defcon.Groups method), 67
get() (defcon.Kerning method), 62
get() (defcon.Lib method), 75
get() (defcon.UnicodeData method), 81
getDataForSerialization() (defcon.Anchor

method), 50
getDataForSerialization() (def-

con.Component method), 44
getDataForSerialization() (defcon.Contour

method), 39
getDataForSerialization() (defcon.Features

method), 71
getDataForSerialization() (defcon.Font

method), 13
getDataForSerialization() (defcon.Glyph

method), 31
getDataForSerialization() (defcon.Groups

method), 67
getDataForSerialization() (defcon.Info

method), 57
getDataForSerialization() (defcon.Kerning

method), 62
getDataForSerialization() (defcon.Layer

method), 21
getDataForSerialization() (defcon.LayerSet

method), 93
getDataForSerialization() (defcon.Lib

method), 75
getDataForSerialization() (def-

con.objects.base.BaseObject method), 90
getDataForSerialization() (def-

con.UnicodeData method), 81
getHeldNotificationNotes() (def-

con.tools.notifications.NotificationCenter
method), 86

getHeldNotifications() (def-
con.tools.notifications.NotificationCenter
method), 86

getPen() (defcon.Glyph method), 31
getPointPen() (defcon.Glyph method), 31
getRepresentation() (defcon.Anchor method), 50
getRepresentation() (defcon.Component

method), 44
getRepresentation() (defcon.Contour method),

39
getRepresentation() (defcon.Features method),

71
getRepresentation() (defcon.Font method), 13
getRepresentation() (defcon.Glyph method), 31
getRepresentation() (defcon.Groups method), 67
getRepresentation() (defcon.Info method), 57
getRepresentation() (defcon.Kerning method),

62

108 Index

defcon Documentation, Release 0.7.0

getRepresentation() (defcon.Layer method), 21
getRepresentation() (defcon.LayerSet method),

93
getRepresentation() (defcon.Lib method), 75
getRepresentation() (def-

con.objects.base.BaseObject method), 90
getRepresentation() (defcon.UnicodeData

method), 81
getSaveProgressBarTickCount() (defcon.Font

method), 13
getSaveProgressBarTickCount() (def-

con.Layer method), 21
getSaveProgressBarTickCount() (def-

con.LayerSet method), 93
Glyph (class in defcon), 26
glyph (defcon.Anchor attribute), 50
glyph (defcon.Component attribute), 44
glyph (defcon.Contour attribute), 39
glyph (defcon.Lib attribute), 75
glyphNameForForcedUnicode() (def-

con.UnicodeData method), 81
glyphNameForUnicode() (defcon.UnicodeData

method), 81
glyphOrder (defcon.Font attribute), 13
glyphsWithOutlines (defcon.Font attribute), 13
glyphsWithOutlines (defcon.Layer attribute), 21
Groups (class in defcon), 64
groups (defcon.Font attribute), 13
guidelineClass (defcon.Glyph attribute), 31
guidelineIndex() (defcon.Font method), 14
guidelineIndex() (defcon.Glyph method), 31
guidelines (defcon.Font attribute), 14
guidelines (defcon.Glyph attribute), 31
guidelines (defcon.Info attribute), 58

H
hasCachedRepresentation() (defcon.Anchor

method), 50
hasCachedRepresentation() (def-

con.Component method), 44
hasCachedRepresentation() (defcon.Contour

method), 39
hasCachedRepresentation() (defcon.Features

method), 71
hasCachedRepresentation() (defcon.Font

method), 14
hasCachedRepresentation() (defcon.Glyph

method), 31
hasCachedRepresentation() (defcon.Groups

method), 67
hasCachedRepresentation() (defcon.Info

method), 58
hasCachedRepresentation() (defcon.Kerning

method), 62

hasCachedRepresentation() (defcon.Layer
method), 21

hasCachedRepresentation() (defcon.LayerSet
method), 93

hasCachedRepresentation() (defcon.Lib
method), 75

hasCachedRepresentation() (def-
con.objects.base.BaseObject method), 90

hasCachedRepresentation() (def-
con.UnicodeData method), 81

hasObserver() (defcon.Anchor method), 50
hasObserver() (defcon.Component method), 44
hasObserver() (defcon.Contour method), 39
hasObserver() (defcon.Features method), 71
hasObserver() (defcon.Font method), 14
hasObserver() (defcon.Glyph method), 31
hasObserver() (defcon.Groups method), 67
hasObserver() (defcon.Info method), 58
hasObserver() (defcon.Kerning method), 62
hasObserver() (defcon.Layer method), 21
hasObserver() (defcon.LayerSet method), 94
hasObserver() (defcon.Lib method), 75
hasObserver() (defcon.objects.base.BaseObject

method), 90
hasObserver() (def-

con.tools.notifications.NotificationCenter
method), 87

hasObserver() (defcon.UnicodeData method), 81
height (defcon.Glyph attribute), 31
holdNotifications() (defcon.Anchor method), 50
holdNotifications() (defcon.Component

method), 45
holdNotifications() (defcon.Contour method),

39
holdNotifications() (defcon.Features method),

71
holdNotifications() (defcon.Font method), 14
holdNotifications() (defcon.Glyph method), 31
holdNotifications() (defcon.Groups method), 67
holdNotifications() (defcon.Info method), 58
holdNotifications() (defcon.Kerning method),

62
holdNotifications() (defcon.Layer method), 22
holdNotifications() (defcon.LayerSet method),

94
holdNotifications() (defcon.Lib method), 75
holdNotifications() (def-

con.objects.base.BaseObject method), 90
holdNotifications() (def-

con.tools.notifications.NotificationCenter
method), 87

holdNotifications() (defcon.UnicodeData
method), 81

Index 109

defcon Documentation, Release 0.7.0

I
identifier (defcon.Anchor attribute), 51
identifier (defcon.Component attribute), 45
identifier (defcon.Contour attribute), 39
identifier (defcon.Point attribute), 47
identifiers (defcon.Anchor attribute), 51
identifiers (defcon.Component attribute), 45
identifiers (defcon.Contour attribute), 39
identifiers (defcon.Font attribute), 14
identifiers (defcon.Glyph attribute), 31
image (defcon.Glyph attribute), 32
imageClass (defcon.Glyph attribute), 32
imageReferences (defcon.Layer attribute), 22
images (defcon.Font attribute), 14
index() (defcon.Contour method), 39
Info (class in defcon), 56
info (defcon.Font attribute), 14
insertAnchor() (defcon.Glyph method), 32
insertComponent() (defcon.Glyph method), 32
insertContour() (defcon.Glyph method), 32
insertGlyph() (defcon.Font method), 14
insertGlyph() (defcon.Layer method), 22
insertGuideline() (defcon.Font method), 14
insertGuideline() (defcon.Glyph method), 32
insertPoint() (defcon.Contour method), 39
items() (defcon.Anchor method), 51
items() (defcon.Groups method), 67
items() (defcon.Kerning method), 62
items() (defcon.Lib method), 76
items() (defcon.UnicodeData method), 81

K
Kerning (class in defcon), 59
kerning (defcon.Font attribute), 14
kerningGroupConversionRenameMaps (def-

con.Font attribute), 14
keys() (defcon.Anchor method), 51
keys() (defcon.Groups method), 67
keys() (defcon.Kerning method), 62
keys() (defcon.Layer method), 22
keys() (defcon.Lib method), 76
keys() (defcon.UnicodeData method), 82

L
Layer (class in defcon), 19
layer (defcon.Anchor attribute), 51
layer (defcon.Component attribute), 45
layer (defcon.Contour attribute), 39
layer (defcon.Glyph attribute), 32
layer (defcon.Lib attribute), 76
layer (defcon.UnicodeData attribute), 82
layerOrder (defcon.LayerSet attribute), 94
layers (defcon.Font attribute), 15

LayerSet (class in defcon), 91
layerSet (defcon.Anchor attribute), 51
layerSet (defcon.Component attribute), 45
layerSet (defcon.Contour attribute), 39
layerSet (defcon.Glyph attribute), 32
layerSet (defcon.Layer attribute), 22
layerSet (defcon.Lib attribute), 76
layerSet (defcon.UnicodeData attribute), 82
leftMargin (defcon.Glyph attribute), 32
Lib (class in defcon), 73
lib (defcon.Font attribute), 15
lib (defcon.Glyph attribute), 32
lib (defcon.Layer attribute), 22
libClass (defcon.Glyph attribute), 32
loadGlyph() (defcon.Layer method), 22

M
markColor (defcon.Glyph attribute), 32
move() (defcon.Anchor method), 51
move() (defcon.Component method), 45
move() (defcon.Contour method), 40
move() (defcon.Glyph method), 32
move() (defcon.Point method), 47

N
name (defcon.Anchor attribute), 51
name (defcon.Glyph attribute), 32
name (defcon.Layer attribute), 22
name (defcon.Point attribute), 47
name (defcon.tools.notifications.Notification attribute),

87
newGlyph() (defcon.Font method), 15
newGlyph() (defcon.Layer method), 22
newLayer() (defcon.Font method), 15
newLayer() (defcon.LayerSet method), 94
note (defcon.Glyph attribute), 33
Notification (class in defcon.tools.notifications), 87
NotificationCenter (class in def-

con.tools.notifications), 85

O
object (defcon.tools.notifications.Notification at-

tribute), 87
onCurvePoints (defcon.Contour attribute), 40
open (defcon.Contour attribute), 40
openRelativeForGlyphName() (def-

con.UnicodeData method), 82

P
path (defcon.Font attribute), 15
Point (class in defcon), 47
pointClass (defcon.Contour attribute), 40
pointClass (defcon.Glyph attribute), 33

110 Index

defcon Documentation, Release 0.7.0

pointInside() (defcon.Component method), 45
pointInside() (defcon.Contour method), 40
pointInside() (defcon.Glyph method), 33
pop() (defcon.Anchor method), 51
pop() (defcon.Groups method), 67
pop() (defcon.Kerning method), 62
pop() (defcon.Lib method), 76
pop() (defcon.UnicodeData method), 82
popitem() (defcon.Anchor method), 51
popitem() (defcon.Groups method), 67
popitem() (defcon.Kerning method), 62
popitem() (defcon.Lib method), 76
popitem() (defcon.UnicodeData method), 82
positionForProspectivePointInsertionAtSegmentAndT()

(defcon.Contour method), 40
postNotification() (defcon.Anchor method), 51
postNotification() (defcon.Component method),

45
postNotification() (defcon.Contour method), 40
postNotification() (defcon.Features method), 71
postNotification() (defcon.Font method), 15
postNotification() (defcon.Glyph method), 33
postNotification() (defcon.Groups method), 67
postNotification() (defcon.Info method), 58
postNotification() (defcon.Kerning method), 63
postNotification() (defcon.Layer method), 22
postNotification() (defcon.LayerSet method), 94
postNotification() (defcon.Lib method), 76
postNotification() (def-

con.objects.base.BaseObject method), 90
postNotification() (defcon.UnicodeData

method), 82
pseudoUnicodeForGlyphName() (def-

con.UnicodeData method), 82

R
redo() (defcon.Anchor method), 51
redo() (defcon.Component method), 45
redo() (defcon.Contour method), 40
redo() (defcon.Features method), 72
redo() (defcon.Font method), 15
redo() (defcon.Glyph method), 33
redo() (defcon.Groups method), 68
redo() (defcon.Info method), 58
redo() (defcon.Kerning method), 63
redo() (defcon.Layer method), 23
redo() (defcon.LayerSet method), 94
redo() (defcon.Lib method), 76
redo() (defcon.objects.base.BaseObject method), 90
redo() (defcon.UnicodeData method), 82
releaseHeldNotifications() (defcon.Anchor

method), 51
releaseHeldNotifications() (def-

con.Component method), 45

releaseHeldNotifications() (defcon.Contour
method), 40

releaseHeldNotifications() (defcon.Features
method), 72

releaseHeldNotifications() (defcon.Font
method), 15

releaseHeldNotifications() (defcon.Glyph
method), 33

releaseHeldNotifications() (defcon.Groups
method), 68

releaseHeldNotifications() (defcon.Info
method), 58

releaseHeldNotifications() (defcon.Kerning
method), 63

releaseHeldNotifications() (defcon.Layer
method), 23

releaseHeldNotifications() (defcon.LayerSet
method), 94

releaseHeldNotifications() (defcon.Lib
method), 76

releaseHeldNotifications() (def-
con.objects.base.BaseObject method), 90

releaseHeldNotifications() (def-
con.tools.notifications.NotificationCenter
method), 87

releaseHeldNotifications() (def-
con.UnicodeData method), 82

reloadData() (defcon.Font method), 15
reloadFeatures() (defcon.Font method), 15
reloadGlyphs() (defcon.Font method), 15
reloadGlyphs() (defcon.Layer method), 23
reloadGroups() (defcon.Font method), 16
reloadImages() (defcon.Font method), 16
reloadInfo() (defcon.Font method), 16
reloadKerning() (defcon.Font method), 16
reloadLayers() (defcon.Font method), 16
reloadLayers() (defcon.LayerSet method), 95
reloadLib() (defcon.Font method), 16
removeAnchor() (defcon.Glyph method), 33
removeComponent() (defcon.Glyph method), 33
removeContour() (defcon.Glyph method), 33
removeGlyphData() (defcon.UnicodeData method),

82
removeGuideline() (defcon.Font method), 16
removeGuideline() (defcon.Glyph method), 33
removeObserver() (defcon.Anchor method), 51
removeObserver() (defcon.Component method), 46
removeObserver() (defcon.Contour method), 40
removeObserver() (defcon.Features method), 72
removeObserver() (defcon.Font method), 16
removeObserver() (defcon.Glyph method), 33
removeObserver() (defcon.Groups method), 68
removeObserver() (defcon.Info method), 58
removeObserver() (defcon.Kerning method), 63

Index 111

defcon Documentation, Release 0.7.0

removeObserver() (defcon.Layer method), 23
removeObserver() (defcon.LayerSet method), 95
removeObserver() (defcon.Lib method), 76
removeObserver() (defcon.objects.base.BaseObject

method), 91
removeObserver() (def-

con.tools.notifications.NotificationCenter
method), 87

removeObserver() (defcon.UnicodeData method),
82

removePoint() (defcon.Contour method), 41
removeSegment() (defcon.Contour method), 41
representationKeys() (defcon.Anchor method),

52
representationKeys() (defcon.Component

method), 46
representationKeys() (defcon.Contour method),

41
representationKeys() (defcon.Features method),

72
representationKeys() (defcon.Font method), 16
representationKeys() (defcon.Glyph method), 34
representationKeys() (defcon.Groups method),

68
representationKeys() (defcon.Info method), 59
representationKeys() (defcon.Kerning method),

63
representationKeys() (defcon.Layer method), 23
representationKeys() (defcon.LayerSet method),

95
representationKeys() (defcon.Lib method), 77
representationKeys() (def-

con.objects.base.BaseObject method), 91
representationKeys() (defcon.UnicodeData

method), 83
reverse() (defcon.Contour method), 41
rightMargin (defcon.Glyph attribute), 34

S
save() (defcon.Font method), 16
save() (defcon.Layer method), 23
save() (defcon.LayerSet method), 95
saveData() (defcon.Font method), 17
saveFeatures() (defcon.Font method), 17
saveGlyph() (defcon.Layer method), 23
saveGroups() (defcon.Font method), 17
saveImages() (defcon.Font method), 17
saveInfo() (defcon.Font method), 17
saveKerning() (defcon.Font method), 17
saveLib() (defcon.Font method), 17
scriptForGlyphName() (defcon.UnicodeData

method), 83
segments (defcon.Contour attribute), 41
segmentType (defcon.Point attribute), 47

setDataFromSerialization() (defcon.Anchor
method), 52

setDataFromSerialization() (def-
con.Component method), 46

setDataFromSerialization() (defcon.Contour
method), 41

setDataFromSerialization() (defcon.Features
method), 72

setDataFromSerialization() (defcon.Font
method), 17

setDataFromSerialization() (defcon.Glyph
method), 34

setDataFromSerialization() (defcon.Groups
method), 68

setDataFromSerialization() (defcon.Info
method), 59

setDataFromSerialization() (defcon.Kerning
method), 63

setDataFromSerialization() (defcon.Layer
method), 23

setDataFromSerialization() (defcon.LayerSet
method), 95

setDataFromSerialization() (defcon.Lib
method), 77

setDataFromSerialization() (def-
con.objects.base.BaseObject method), 91

setDataFromSerialization() (def-
con.UnicodeData method), 83

setdefault() (defcon.Anchor method), 52
setdefault() (defcon.Groups method), 68
setdefault() (defcon.Kerning method), 63
setdefault() (defcon.Lib method), 77
setdefault() (defcon.UnicodeData method), 83
setStartPoint() (defcon.Contour method), 41
smooth (defcon.Point attribute), 47
sortGlyphNames() (defcon.UnicodeData method),

83
splitAndInsertPointAtSegmentAndT() (def-

con.Contour method), 41

T
tempLib (defcon.Font attribute), 17
tempLib (defcon.Glyph attribute), 34
tempLib (defcon.Layer attribute), 23
testForExternalChanges() (defcon.Font

method), 17
testForExternalChanges() (defcon.Layer

method), 23
testForExternalChanges() (defcon.LayerSet

method), 95
text (defcon.Features attribute), 72
topMargin (defcon.Glyph attribute), 34
transformation (defcon.Component attribute), 46

112 Index

defcon Documentation, Release 0.7.0

U
ufoFileStructure (defcon.Font attribute), 18
ufoFormatVersion (defcon.Font attribute), 18
ufoFormatVersionTuple (defcon.Font attribute),

18
undo() (defcon.Anchor method), 52
undo() (defcon.Component method), 46
undo() (defcon.Contour method), 41
undo() (defcon.Features method), 72
undo() (defcon.Font method), 18
undo() (defcon.Glyph method), 34
undo() (defcon.Groups method), 68
undo() (defcon.Info method), 59
undo() (defcon.Kerning method), 63
undo() (defcon.Layer method), 23
undo() (defcon.LayerSet method), 95
undo() (defcon.Lib method), 77
undo() (defcon.objects.base.BaseObject method), 91
undo() (defcon.UnicodeData method), 85
undoManager (defcon.Anchor attribute), 52
undoManager (defcon.Component attribute), 46
undoManager (defcon.Contour attribute), 41
undoManager (defcon.Features attribute), 72
undoManager (defcon.Font attribute), 18
undoManager (defcon.Glyph attribute), 34
undoManager (defcon.Groups attribute), 68
undoManager (defcon.Info attribute), 59
undoManager (defcon.Kerning attribute), 63
undoManager (defcon.Layer attribute), 23
undoManager (defcon.LayerSet attribute), 95
undoManager (defcon.Lib attribute), 77
undoManager (defcon.objects.base.BaseObject at-

tribute), 91
undoManager (defcon.UnicodeData attribute), 85
unicode (defcon.Glyph attribute), 34
UnicodeData (class in defcon), 78
unicodeData (defcon.Font attribute), 18
unicodeData (defcon.Layer attribute), 23
unicodeForGlyphName() (defcon.UnicodeData

method), 85
unicodes (defcon.Glyph attribute), 34
update() (defcon.Anchor method), 52
update() (defcon.Groups method), 68
update() (defcon.Kerning method), 63
update() (defcon.Lib method), 77
update() (defcon.UnicodeData method), 85
updateGlyphOrder() (defcon.Font method), 18

V
values() (defcon.Anchor method), 52
values() (defcon.Groups method), 68
values() (defcon.Kerning method), 64
values() (defcon.Lib method), 77
values() (defcon.UnicodeData method), 85

verticalOrigin (defcon.Glyph attribute), 34

W
width (defcon.Glyph attribute), 34

X
x (defcon.Anchor attribute), 52
x (defcon.Point attribute), 47

Y
y (defcon.Anchor attribute), 52
y (defcon.Point attribute), 47

Index 113

	Basic Usage
	Concepts
	Objects
	Dependencies
	Optional Dependencies
	Indices and tables
	Python Module Index
	Index

